JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ORIGIN-SYMMETRIC CONVEX BODIES WITH MINIMAL MAHLER VOLUME IN ℝ2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ORIGIN-SYMMETRIC CONVEX BODIES WITH MINIMAL MAHLER VOLUME IN ℝ2
Lin, Youjiang; Leng, Gangsong;
  PDF(new window)
 Abstract
In this paper, a new proof of the following result is given: The product of the volumes of an origin-symmetric convex bodies K in and of its polar body is minimal if and only if K is a parallelogram.
 Keywords
convex body;polar body;Mahler conjecture;polytopes;
 Language
English
 Cited by
 References
1.
J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in ${\mathbb{R}}^n$, Invent. Math. 88 (1987), no. 2, 319-340. crossref(new window)

2.
S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), 128-141. crossref(new window)

3.
S. Campi and P. Gronchi, Volume inequalities for $L_p$-zonotopes, Mathematika 53 (2006), no. 1, 71-80. crossref(new window)

4.
S. Campi and P. Gronchi, On volume product inequalities for convex sets, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2393-2402. crossref(new window)

5.
Y. Gordon, M. Meyer, and S. Reisner, Zonoids with minimal volume-product - a new proof, Proc. Amer. Math. Soc. 104 (1988), no. 1, 273-276.

6.
G. Kuperberg, A low-technology estimate in convex geometry, Inte${\mathbb{R}}^n$at. Math. Res. Notices 1992 (1992), no. 9, 181-183. crossref(new window)

7.
G. Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18 (2008), no. 3, 870-892. crossref(new window)

8.
K. Mahler, Ein Ubertragungsprinzip fur konvexe Korper, Casopis Pyest. Mat. Fys. 68 (1939), 93-102.

9.
K. Mahler, Ein Minimalproblem fur konvexe Polygone, Mathematica (Zutphen) B. 7 (1939), 118-127.

10.
M. Meyer, Une caracterisation volumique de certains espaces normes de dimension finie, Israel J. Math. 55 (1986), no. 3, 317?-326. crossref(new window)

11.
S. Reisner, Random polytopes and the volume-product of symmetric convex bodies, Math. Scand. 57 (1985), no. 2, 386-392.

12.
S. Reisner, Zonoids with minimal volume-product, Math. Z. 192 (1986), no. 3, 339-346. crossref(new window)

13.
S. Reisner, Minimal volume product in Banach spaces with a 1-unconditional basis, J. London Math. Soc. 36 (1987), no. 1, 126-136.

14.
C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathe- matika 5 (1958), 93-102.

15.
J. Saint Raymond, Sur le volume des corps convexes symetriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Exp. No. 11, 25 pp., Publ. Math. Univ. Pierre et Marie Curie, 46, Univ. Paris VI, Paris, 1981.

16.
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., vol. 44, Cambridge University Press, Cambridge, 1993.

17.
T. Tao, Structure and Randomness, Pages from year one of a mathematical blog. American Mathematical Society, Providence, RI, 2008.