JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ERROR ESTIMATES OF RT1 MIXED METHODS FOR DISTRIBUTED OPTIMAL CONTROL PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ERROR ESTIMATES OF RT1 MIXED METHODS FOR DISTRIBUTED OPTIMAL CONTROL PROBLEMS
Hou, Tianliang;
  PDF(new window)
 Abstract
In this paper, we investigate the error estimates of a quadratic elliptic control problem with pointwise control constraints. The state and the co-state variables are approximated by the order k
 Keywords
elliptic equations;distributed optimal control problems;-error estimates;RT1 mixed finite element methods;
 Language
English
 Cited by
 References
1.
N. Arada, E. Casas, and F. Troltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002), no. 2, 201-229. crossref(new window)

2.
R. Becker, H. Kapp, and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concept, SIAM J. Control Optim. 39 (2000), no. 1, 113-132. crossref(new window)

3.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.

4.
Y. Chen, Superconvergence of mixed finite element methods for optimal control problems, Math. Comp. 77 (2008), no. 263, 1269-1291. crossref(new window)

5.
Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Internat. J. Numer. Methods Engrg. 75 (2008), no. 8, 881-898. crossref(new window)

6.
Y. Chen and Y. Dai, Superconvergence for optimal control problems governed by semilinear elliptic equations, J. Sci. Comput. 39 (2009), no. 2, 206-221.

7.
Y. Chen, Y. Huang, W. B. Liu, and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput. 42 (2009), no. 3, 382-403.

8.
Y. Chen and W. B. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Comp. Appl. Math. 211 (2008), no. 1, 76-89. crossref(new window)

9.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

10.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston-London-Melbourne, 1985.

11.
J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52. crossref(new window)

12.
F. S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl. 44 (1973), 28-47. crossref(new window)

13.
T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO. Anal. Numer. 13 (1979), no. 4, 313-328. crossref(new window)

14.
R. Li, W. B. Liu, H. P. Ma, and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim. 41 (2002), no. 5, 1321-1349. crossref(new window)

15.
R. Li and W. Liu, http://circus.math.pku.edu.cn/AFEPack.

16.
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

17.
W. B. Liu and N. N. Yan, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math. 15 (2001), 285-309. crossref(new window)

18.
Z. Lu and Y. Chen, $L^{\infty}$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations, Numer. Anal. Appl. 2 (2009), no. 1, 74-86. crossref(new window)

19.
C. Meyer and A. Rosch, Superconvergence properties of optimal control problems, SIAM J. Control Optim. 43 (2004), no. 3, 970-985. crossref(new window)

20.
C. Meyer and A. Rosch, $L^{\infty}$-error estimates for approximated optimal control problems, SIAM J. Control Optim. 44 (2005), 1636-1649. crossref(new window)

21.
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, aspects of the finite element method, Lecture Notes in Math, Springer, Berlin, 606 (1977), 292-315.

22.
X. Xing and Y. Chen, $L^{\infty}$-error estimates for general optimal control problem by mixed finite element methods, Int. J. Numer. Anal. Model. 5 (2008), no. 3, 441-456.