JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON GORENSTEIN COTORSION DIMENSION OVER GF-CLOSED RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON GORENSTEIN COTORSION DIMENSION OVER GF-CLOSED RINGS
Gao, Zenghui;
  PDF(new window)
 Abstract
In this article, we introduce and study the Gorenstein cotorsion dimension of modules and rings. It is shown that this dimension has nice properties when the ring in question is left GF-closed. The relations between the Gorenstein cotorsion dimension and other homological dimensions are discussed. Finally, we give some new characterizations of weak Gorenstein global dimension of coherent rings in terms of Gorenstein cotorsion modules.
 Keywords
Gorenstein flat module;Gorenstein cotorsion dimension;weak Gorenstein global dimension;GF-closed ring;
 Language
English
 Cited by
 References
1.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd edition, Graduate Texts in Math., vol. 13, New York, Springer-Verlag, 1992.

2.
M. Auslander and M. Bridger, Stable Module Theory, Mem. Amer. Math. Soc., No. 94. Providence, RI, 1969.

3.
D. Bennis, Rings over which the class of Gorenstein flat modules is closed under extensions, Comm. Algebra 37 (2009), no. 3, 855-868. crossref(new window)

4.
D. Bennis, Weak Gorenstein global dimension, Int. Electron. J. Algebra 8 (2010), 140-152.

5.
D. Bennis and N. Mahdou, On n-perfect rings and cotorsion dimension, J. Algebra Appl. 8 (2009), no. 2, 181-190. crossref(new window)

6.
D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465.

7.
L. Bican, E. Bashier, and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), no. 4, 385-390. crossref(new window)

8.
L. W. Christensen, Gorenstein Dimensions, Lecture Notes in Math., 1747, Berlin: Springer-Verlag, 2000.

9.
N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459-1470. crossref(new window)

10.
N. Q. Ding and J. L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78 (1993), no. 2, 165-177. crossref(new window)

11.
N. Q. Ding and J. L. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. crossref(new window)

12.
E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. crossref(new window)

13.
E. E. Enochs, S. Estrada, and B. Torrecillas, Gorenstein flat covers and Gorenstein cotorsion modules over integral group rings, Algebr. Represent. Theory 8 (2005), no. 4, 525-539. crossref(new window)

14.
E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. crossref(new window)

15.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Berlin: Walter de Gruyter, 2000.

16.
E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (2004), no. 1, 46-62.

17.
E. E. Enochs and J. A. Lopez-Ramos, Gorenstein Flat Modules, Nova Science Publishers, Inc., Huntington, NY 2001.

18.
E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.

19.
Z. H. Gao, On n-FI-injective and n-FI-flat modules, Comm. Algebra 40 (2012), no. 8, 2757-2770. crossref(new window)

20.
Z. H. Gao, On GI-injective modules, Comm. Algebra 40 (2012), no. 10, 3841-3858. crossref(new window)

21.
H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. crossref(new window)

22.
Z. K. Liu and X. Y. Yang, Gorenstein projective, injective and flat modules, J. Aust. Math. Soc. 87 (2009), no. 3, 395-407.

23.
L. X. Mao and N. Q. Ding, The cotorsion dimension of modules and rings, Abelian groups, rings, modules, and homological algebra, 217-33, Lect. Notes Pure Appl. Math., 249, Chapman & Hall/CRC, Boca Raton, FL, 2006.

24.
J. J. Rotman, An Introduction to Homological Algebra, New York: Academic Press, 1979.

25.
P. F. Smith, Injective modules and prime ideals, Comm. Algebra 9 (1981), no. 9, 989-999. crossref(new window)

26.
J. Z. Xu, Flat Covers of Modules, Lecture Notes inMath., 1634, Berlin: Springer-Verlag, 1996.

27.
G. Yang and Z. K. Liu, Gorenstein flat covers over GF-closed rings, Comm. Algebra 40 (2012), no. 5, 1632-1642. crossref(new window)