JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXISTENCE OF SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS WITH INFINITE DELAY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXISTENCE OF SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS WITH INFINITE DELAY
Dong, Qixiang; Li, Gang;
  PDF(new window)
 Abstract
This paper is concerned with nonlinear evolution differential equations with infinite delay in Banach spaces. Using Kato`s approximating approach, existence and uniqueness of strong solutions are obtained.
 Keywords
nonlinear evolution equation;m-accretive operator;approximate;strong solution;
 Language
English
 Cited by
1.
Approximate Controllability for a Semilinear Evolution System with Infinite Delay, Journal of Dynamical and Control Systems, 2016, 22, 1, 71  crossref(new windwow)
2.
Optimal Control Problems for a Semilinear Evolution System with Infinite Delay, Applied Mathematics & Optimization, 2017  crossref(new windwow)
 References
1.
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noord-hoff, Leyden, 1976.

2.
J. Dyson and R. V. Bressan, Functional differential equations and non-linear evolution operators, Proc. Roy. Soc. Edinburgh Ser. A 75 (1975/1976), no. 3, 223-234. crossref(new window)

3.
J. Dyson and R. V. Bressan, Semigroups of translations associated with functional and functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A 82 (1978/79), no. 3-4, 171-188. crossref(new window)

4.
Z. Fan, Existence and continuous dependence results for nonlinear differential inclusions with infinite delay, Nonlinear Anal. 69 (2008), no. 8, 2379-2392. crossref(new window)

5.
W. Fitzgibbon, Representation and approximation of solutions to semilinear Volterra equations with delay, J. Differential Equations 32 (1979), no. 2, 233-249. crossref(new window)

6.
C. Gori, V. Obukhovskii, M. Ragni, and P. Rubbioni, Existence and continuous dependence results for semilinear functional differential inclusions with infinite delay, Nonlinear Anal. 51 (2002), 765-782. crossref(new window)

7.
J. K. Hale and J. Kato, Phace space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), no. 1, 11-41.

8.
H. R. Henriquez, Differentiability of solutions of second-order functional differential equations with unbounded delay, J. Math. Anal. Appl. 280 (2003), no. 2, 284-312. crossref(new window)

9.
Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay, in Lecture Notes in Math. Vol. 1473, Springer-Verlag, Berlin, 1991.

10.
A. G. Kartsatos and M. E. Parrott Convergence of the Kato approximants for evolution equations involving functional perturbations, J. Differential Equations 47 (1983), no. 3, 358-377. crossref(new window)

11.
T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. crossref(new window)

12.
J. Liang and T. J. Xiao, The Cauchy problem for nonlinear abstract functional differential equations with infinite delay, Comput. Math. Appl. 40 (2000), no. 6-7, 693-703. crossref(new window)

13.
N. H. Pavel, Nonlinear evolution operators and semigroups, in Lecture Notes in Mathematics, Vol. 1260, Springer-Verlag, Berlin, 1987.

14.
K. Schumacher, Existence and continuous dependence for functional differential equations with unbounded delay, Arch. Ration. Mech. Anal. 67 (1978), no. 4, 315-335.

15.
C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418. crossref(new window)

16.
C. C. Travis and G. F. Webb, Existence, stability and compactness in the ${\alpha}$-norm for partial functional differential equations, Trans. Amer. Math. Soc. 240 (1978), 129-143.

17.
G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1-12. crossref(new window)

18.
G. F. Webb, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225-230. crossref(new window)