JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXTINCTION AND NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSIVE p-LAPLACE EQUATION WITH A NONLOCAL SOURCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXTINCTION AND NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSIVE p-LAPLACE EQUATION WITH A NONLOCAL SOURCE
Han, Yuzhu; Gao, Wenjie; Li, Haixia;
  PDF(new window)
 Abstract
In this paper, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive p-Laplace equation $u_t
 Keywords
p-Laplace equation;nonlocal source;extinction;
 Language
English
 Cited by
1.
A complete characterization of nonlinear absorption for the evolution p-Laplacian equations to have positive or extinctive solutions, Computers & Mathematics with Applications, 2016, 71, 8, 1624  crossref(new windwow)
2.
Critical extinction exponent for a quasilinear parabolic equation with a gradient source, Journal of Applied Mathematics and Computing, 2015, 48, 1-2, 335  crossref(new windwow)
 References
1.
J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion, Arch. Ration. Mech. Anal. 74 (1980), no. 4, 379-388.

2.
E. Dibenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.

3.
R. Ferreira and J. L. Vazquez, Extinction behavior for fast diffusion equations with absorption, Nonlinear Anal. 43 (2001), 943-985. crossref(new window)

4.
A. Friedman and Miguel A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987), no. 2, 530-546. crossref(new window)

5.
A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous medium, Trans. Amer. Math. Soc. 262 (1980), no. 2, 551-563.

6.
J. Furter and M. Crinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol. 27 (1989), no. 1, 65-80. crossref(new window)

7.
V. A. Galaktionov and J. R. King, Fast diffusion equation with critical Sobolev exponent in a ball, Nonlinearity 15 (2002), no. 1, 173-188. crossref(new window)

8.
V. A. Galaktionov, L. A. Peletier, and J. L. Vazquez, Asymptotics of the fast-diffusion equation with critical exponent, SIAM J. Math. Anal. 31 (2000), no. 5, 1157-1174. crossref(new window)

9.
V. A. Galaktionov and J. L. Vazquez, Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach, J. Funct. Anal. 100 (1991), no. 2, 435-462. crossref(new window)

10.
V. A. Galaktionov and J. L. Vazquez, Extinction for a quasilinear heat equation with absorption I. Technique of intersection comparison, Comm. Partial Differential Equations 19 (1994), no. 7-8, 1075-1106. crossref(new window)

11.
V. A. Galaktionov and J. L. Vazquez, Extinction for a quasilinear heat equation with absorption II. A dynamical system approach, Comm. Partial Differential Equations 19 (1994), no. 7-8, 1107-1137. crossref(new window)

12.
Y. G. Gu, Necessary and sufficient conditions of extinction of solution on parabolic equations, Acta. Math. Sinica 37 (1994), 73-79 (in Chinese).

13.
Y. Z. Han and W. J. Gao, Extinction for a fast diffusion equation with a nonlinear nonlocal source, Arch. Math. (Basel) 97 (2011), no. 4, 353-363. crossref(new window)

14.
M. A. Herrero and J. J. L. Velazquez, Approaching an extinction point in one-dimensional semilinear heat equations with strong absorptions, J. Math. Anal. Appl. 170 (1992), no. 2, 353-381. crossref(new window)

15.
C. H. Jin, J. X. Yin, and Y. Y. Ke, Critical extinction and blow-up exponents for fast diffusive polytropic filtration equation with sources, Proc. Edinb. Math. Soc. (2) 52 (2009), no. 2, 419-444. crossref(new window)

16.
A. S. Kalashnikov, The nature of the propagation of perturbations in problems of nonlinear heat conduction with absorption, USSR Comp. Math. Math. Phys. 14 (1974), 70-85. crossref(new window)

17.
A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Uspekhi Mat. Nauk 42 (1987), no. 2, 135-176.

18.
F. C. Li and C. H. Xie, Global and blow-up solutions to a p-Laplacian equation with nonlocal source, Comput. Math. Appl. 46 (2003), no. 10-11, 1525-1533. crossref(new window)

19.
Y. X. Li and J. C. Wu, Extinction for fast diffusion equations with nonlinear sources, Electron J. Differential Equations 2005 (2005), no. 23, 1-7.

20.
W. Liu, Extinction and non-extinction of solutions for a nonlocal reaction-diffusion problem, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), no. 15, 1-12.

21.
W. Liu and B. Wu, A note on extinction for fast diffusive p-Laplacian with source, Math. Methods Appl. Sci. 31 (2008), no. 12, 1383-1386. crossref(new window)

22.
E. S. Sabinina, On a class of non-linear degenerate parabolic equations, Dolk. Akad. Nauk SSSR 143 (1962), 794-797.

23.
Y. Tian and C. L. Mu, Extinction and non-extinction for a p-Laplacian equation with nonlinear source, Nonlinear Anal. 69 (2008), no. 8, 2422-2431. crossref(new window)

24.
J. X. Yin and C. H. Jin, Critical extinction and blow-up exponents for fast diffusive p-Laplacian with sources, Math. Methods Appl. Sci. 30 (2007), no. 10, 1147-1167. crossref(new window)

25.
J. X. Yin, J. Li, and C. H. Jin, Non-extinction and critical exponent for a polytropic filtration equation, Nonlinear Anal. 71 (2009), no. 1-2, 347-357. crossref(new window)

26.
H. J. Yuan, S. Z. Lian, W. J. Gao, X. J. Xu, and C. L. Cao, Extinction and positivity for the evolution p-Laplacian equation in $R^N$, Nonlinear Anal. 60 (2005), no. 6, 1085-1091. crossref(new window)