JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SHADOWING, EXPANSIVENESS AND STABILITY OF DIVERGENCE-FREE VECTOR FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SHADOWING, EXPANSIVENESS AND STABILITY OF DIVERGENCE-FREE VECTOR FIELDS
Ferreira, Celia;
  PDF(new window)
 Abstract
Let X be a divergence-free vector field defined on a closed, connected Riemannian manifold. In this paper, we show the equivalence between the following conditions: X is a divergence-free vector field satisfying the shadowing property. X is a divergence-free vector field satisfying the Lipschitz shadowing property. X is an expansive divergence-free vector field. X has no singularities and is Anosov.
 Keywords
shadowing;Lipschitz shadowing;expansiveness;Anosov vector fields;
 Language
English
 Cited by
1.
Generic expansive Hamiltonian systems, Chaos, Solitons & Fractals, 2014, 61, 24  crossref(new windwow)
2.
Asymptotic Average Shadowing Property and Chain Transitivity for Multiple Flow Systems, Differential Equations and Dynamical Systems, 2016  crossref(new windwow)
3.
Conservative flows with various types of shadowing, Chaos, Solitons & Fractals, 2015, 75, 243  crossref(new windwow)
4.
Shadowing, expansiveness and specification for C1-conservative systems, Acta Mathematica Scientia, 2015, 35, 3, 583  crossref(new windwow)
5.
Stable weakly shadowable volume-preserving systems are volume-hyperbolic, Acta Mathematica Sinica, English Series, 2014, 30, 6, 1007  crossref(new windwow)
6.
Measure expansivity for C1-conservative systems, Chaos, Solitons & Fractals, 2015, 81, 400  crossref(new windwow)
7.
Continuum-wise expansiveness for non-conservative or conservative systems, Chaos, Solitons & Fractals, 2016, 87, 314  crossref(new windwow)
 References
1.
D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Math. Inst. 90 (1967), 1-235.

2.
M. Bessa, C. Ferreira, and J. Rocha, On the stability of the set of hyperbolic closed orbits of a Hamiltonian, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 2, 373-383. crossref(new window)

3.
M. Bessa and J. Rocha, On $C^1$-robust transitivity of volume-preserving flows, J. Differential Equations 245 (2008), no. 11, 3127-3143. crossref(new window)

4.
M. Bessa and J. Rocha, Three-dimensional conservative star flows are Anosov, Discrete Contin. Dyn. Syst. 26 (2010), no. 3, 839-846.

5.
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin-New York, 1975.

6.
R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations 12 (1972), 180-193. crossref(new window)

7.
C. Doering, Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985), 59-89, Pitman Res. Notes Math. Ser., 160, Longman Sci. Tech., Harlow, 1987.

8.
C. Ferreira, Stability properties of divergence-free vector fields, Dyn. Syst. 27 (2012), no. 2, 223-238. crossref(new window)

9.
K. Lee and K. Sakai, Structural stability of vector fields with shadowing, J. Differential Equations 232 (2007), no. 1, 303-313. crossref(new window)

10.
R. Mane, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc. 229 (1977), 351-370. crossref(new window)

11.
K. Moriyasu, K. Sakai, and W. Sun, $C^1$-stably expansive flows, J. Differential Equations 213 (2005), no. 2, 352-367. crossref(new window)

12.
J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. crossref(new window)

13.
K. Palmer, S. Piyugin, and S. Tikhomirov, Lipschitz shadowing and structural stability of flows, J. Differential Equations 252 (2012), no. 2, 1723-1747. crossref(new window)

14.
S. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes Math., Springer, Berlin, 1999.

15.
S. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity 23 (2010), no. 10, 2509-2515. crossref(new window)

16.
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. crossref(new window)

17.
S. Tikhomirov, Interiors of sets of vector fields with shadowing corresponding to certain classes of reparameterizations, Vestnik St. Petersburg Univ. Math. 41 (2008), no. 4, 360-366. crossref(new window)

18.
T. Vivier, Projective hyperbolicity and fixed points, Ergodic Theory Dynam. Systems 26 (2006), no. 3, 923-936. crossref(new window)

19.
C. Zuppa, Regularisation $C^{\infty}$ des champs vectoriels qui preservent l'element de volume, Bol. Soc. Bras. Mat. 10 (1979), no. 2, 51-56. crossref(new window)