JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS
Wen, Zhi-Tao;
  PDF(new window)
 Abstract
During the last decade, several papers have focused on linear q-difference equations of the form ${\sum}^n_{j
 Keywords
logarithmic Borel exceptional value;logarithmic derivative;logarithmic exponent of convergence;logarithmic order;q-Casorati determinant;q-difference equation;
 Language
English
 Cited by
1.
Growth of Meromorphic Solutions to Some Complex Functional Equations, Computational Methods and Function Theory, 2016, 16, 3, 489  crossref(new windwow)
2.
Growth of Meromorphic Solutions of Finite Logarithmic Order of Linear Difference Equations, Fasciculi Mathematici, 2015, 54, 1  crossref(new windwow)
 References
1.
M. H. Abu Risha, M. H. Annaby, M. E. H. Ismail, and Z. S. Mansour, Linear q-difference equations, Z. Anal. Anwend. 26 (2007), no. 4, 481-494.

2.
G. E. Andrews, R. Asker, and R. Roy, Special Functions, Cambridge University press, 1999.

3.
D. C. Barnett, R. G. Halburd, W. Morgan, and R. J. Korhonen, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3., 457-474. crossref(new window)

4.
C. Berg and H. L. Pedersen, Logarithmic order and type of indeterminate moment problems, With an appendix by Walter Hayman, Difference equations, special functions and orthogonal polynomials, 51-79, World Sci. Publ., Hackensack, NJ, 2007.

5.
W. Bergweiler and W. K. Hayman, Zeros of solutions of a functional equation, Comput. Methods Funct. Theory 3 (2003), no. 1, 55-78.

6.
W. Bergweiler, K. Ishizaki, and N. Yanagihara, Meromorphic solutions of some functional equations, Methods Appl. Anal. 5 (1998), no. 3, 248-258.

7.
W. Bergweiler, K. Ishizaki, and N. Yanagihara, Growth of meromorphic solutions of some functional equations, I. Aequationes Math. 63 (2002), no. 1-2, 140-151. crossref(new window)

8.
B.-Q. Chen and Z.-X. Chen, Meromorphic solutions of some q-difference equations, Bull. Korean Math. Soc. 48 (2011), no. 6, 1303-1314. crossref(new window)

9.
B.-Q. Chen, Z.-X. Chen, and S. Li, Properties on solutions of some q-difference equations, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 10, 1877-1886. crossref(new window)

10.
Y.-M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z+${\eta}$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. crossref(new window)

11.
Peter T.-Y. Chern, On meromorphic functions with finite logarithmic order, Trans. Amer. Math. Soc. 358 (2006), no. 2, 473-489. crossref(new window)

12.
J. Clunie, On integral functions having prescribed asymptotic growth, Canad. J. Math. 17 (1965), 396-404. crossref(new window)

13.
J. Clunie and T. Kovari, On integral functions having prescribed asymptotic growth. II, Canad. J. Math. 20 (1968), 7-20. crossref(new window)

14.
G. Gasper and M. Rahman, Basic Hypergeometric Series, Second Edition, Cambridge, Cambridge Univ. Press 2004.

15.
A. A. Goldberg and I. V. Ostrovskii, Value distribution of meromorphic functions, Translated from the 1970 Russian original by Mikhail Ostrovskii.With an appendix by Alexandre Eremenko and James K. Langley.Translations of Mathematical Monographs, 236. American Mathematical Society, Providence, RI, 2008.

16.
R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, arXiv:0903.3236v1.

17.
W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

18.
W. K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv. 34 (1960), 75-84. crossref(new window)

19.
J. Heittokangas, I. Laine, J. Rieppo, and D.-G. Yang, Meromorphic solutions of some linear functional equations, Aequations Math. 60 (2000), no. 1-2, 148-166. crossref(new window)

20.
I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin-New York, 1993.

21.
H. Meschkowski, Differenzengleichungen, Studia Mathematica, Bd. XIV Vandenhoeck and Ruprecht, Gottingen 1959.