JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS
Khan, Rahmat Ali;
  PDF(new window)
 Abstract
In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type , where, n-1 < q < n, , 0 < < 1 and is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.
 Keywords
boundary value problems;fractional differential equations;three-point boundary conditions;upper and lower solutions;generalized quasilinearization;
 Language
English
 Cited by
 References
1.
S. Abbas and M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 3, 406-413. crossref(new window)

2.
B. Ahmad and J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009), no. 9, 1838-1843. crossref(new window)

3.
Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. 72 (2010), no. 2, 916-924. crossref(new window)

4.
Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), no. 2, 495-505. crossref(new window)

5.
M. Benchohra and S. Hamani, The method of upper and lower solutions and impulsive fractional differential inclusions, Nonlinear Anal. Hybrid Syst. 3 (2009), no. 4, 433-440. crossref(new window)

6.
M. Benchohra, S. Hamani, and S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. 71 (2009), no. 7-8, 2391-2396. crossref(new window)

7.
J. V. Devi, F. A. McRae, and Z. Drici, Generalized quasilinearization for fractional differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1057-1062. crossref(new window)

8.
J. V. Devi and Ch. Suseela, Quasilinearization for fractional differential equations, Commun. Appl. Anal. 12 (2008), no. 4, 407-417.

9.
C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010), no. 9, 1050-1055. crossref(new window)

10.
R. A. Khan, Multi-Point Boundary Value Problems for Fractional Differential Equations, Comm. Appl. Nonlinear Anal. 18 (2011), no. 3, 31-40.

11.
R. A. Kha, Existence and approximation of solutions to three-point boundary value problem for fractional differential equations, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), no. 58, 8 pp. crossref(new window)

12.
R. A. Khan and M. Rehman, Existence of multiple positive solutions for a general system of fractional differential equations, Comm. Appl. Nonlinear Anal. 18 (2011), no. 1, 25-35.

13.
A. A. Kilbas, H. M. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006.

14.
V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett. 21 (2008), no. 8, 828-834. crossref(new window)

15.
C. F. Li, X. N. Luo, and Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1363-1375. crossref(new window)

16.
S. Liang and J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), no. 11, 5545-5550. crossref(new window)

17.
F. A. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal. 71 (2009), no. 12, 6093-6096. crossref(new window)

18.
I. Podlubny, Fractional Differential Equations, Academic Press San Diedo, 1999.

19.
M. Rehman and R. A. Khan, Positive solutions to nonlinear higher-order nonlocal boundary value problems for fractional differential equations, Abstract. Appl. Anal. 2010 (2010), 15 pp., doi:10.1155/2010/501230. crossref(new window)

20.
M. Rehman and R. A. Khan, Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. Math. Lett. 23 (2010), no. 9, 1038-1044. crossref(new window)

21.
M. Rehman, R. A. Khan, and N. Asif, Three point boundary value problems for nonlinear fractional differential equations, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 4, 1337-1346.

22.
J. Sabatier, O. P. Agarwal, and J. A. Ttenreiro Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer 2007.

23.
A. Shi and S. Zhang, Upper and lower solutions method and a fractional differential equation boundary value problem, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), no. 30, 13 pp.

24.
J. Wang and H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator, Abstr. Appl. Anal. 2010 (2010), Art. ID 971824 12 pp.

25.
W. Zhong, Positive solutions for multipoint boundary value problem of fractional dif- ferential equations, Abstr. Appl. Anal. 2010 (2010), Art. ID 601492, 15 pp.