HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 51, Issue 2, 2014, pp.329-338
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2014.51.2.329

Title & Authors

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

Khan, Rahmat Ali;

Khan, Rahmat Ali;

Abstract

In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type , where, n-1 < q < n, , 0 < < 1 and is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.

Keywords

boundary value problems;fractional differential equations;three-point boundary conditions;upper and lower solutions;generalized quasilinearization;

Language

English

References

1.

S. Abbas and M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 3, 406-413.

2.

B. Ahmad and J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009), no. 9, 1838-1843.

3.

Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. 72 (2010), no. 2, 916-924.

4.

Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), no. 2, 495-505.

5.

M. Benchohra and S. Hamani, The method of upper and lower solutions and impulsive fractional differential inclusions, Nonlinear Anal. Hybrid Syst. 3 (2009), no. 4, 433-440.

6.

M. Benchohra, S. Hamani, and S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. 71 (2009), no. 7-8, 2391-2396.

7.

J. V. Devi, F. A. McRae, and Z. Drici, Generalized quasilinearization for fractional differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1057-1062.

8.

J. V. Devi and Ch. Suseela, Quasilinearization for fractional differential equations, Commun. Appl. Anal. 12 (2008), no. 4, 407-417.

9.

C. S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010), no. 9, 1050-1055.

10.

R. A. Khan, Multi-Point Boundary Value Problems for Fractional Differential Equations, Comm. Appl. Nonlinear Anal. 18 (2011), no. 3, 31-40.

11.

R. A. Kha, Existence and approximation of solutions to three-point boundary value problem for fractional differential equations, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), no. 58, 8 pp.

12.

R. A. Khan and M. Rehman, Existence of multiple positive solutions for a general system of fractional differential equations, Comm. Appl. Nonlinear Anal. 18 (2011), no. 1, 25-35.

13.

A. A. Kilbas, H. M. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006.

14.

V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett. 21 (2008), no. 8, 828-834.

15.

C. F. Li, X. N. Luo, and Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1363-1375.

16.

S. Liang and J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), no. 11, 5545-5550.

17.

F. A. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal. 71 (2009), no. 12, 6093-6096.

18.

I. Podlubny, Fractional Differential Equations, Academic Press San Diedo, 1999.

19.

M. Rehman and R. A. Khan, Positive solutions to nonlinear higher-order nonlocal boundary value problems for fractional differential equations, Abstract. Appl. Anal. 2010 (2010), 15 pp., doi:10.1155/2010/501230.

20.

M. Rehman and R. A. Khan, Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. Math. Lett. 23 (2010), no. 9, 1038-1044.

21.

M. Rehman, R. A. Khan, and N. Asif, Three point boundary value problems for nonlinear fractional differential equations, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 4, 1337-1346.

22.

J. Sabatier, O. P. Agarwal, and J. A. Ttenreiro Machado, Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer 2007.

23.

A. Shi and S. Zhang, Upper and lower solutions method and a fractional differential equation boundary value problem, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), no. 30, 13 pp.

24.

J. Wang and H. Xiang, Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator, Abstr. Appl. Anal. 2010 (2010), Art. ID 971824 12 pp.

25.

W. Zhong, Positive solutions for multipoint boundary value problem of fractional dif- ferential equations, Abstr. Appl. Anal. 2010 (2010), Art. ID 601492, 15 pp.