JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DING PROJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING MODULE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DING PROJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING MODULE
Zhang, Chunxia; Wang, Limin; Liu, Zhongkui;
  PDF(new window)
 Abstract
In this paper, we introduce and discuss the notion of -projective modules over commutative rings, where C is a semidualizing module. This extends Gillespie and Ding, Mao's notion of Ding projective modules. The properties of -projective dimensions are also given.
 Keywords
semidualizing modules;-projective modules;-projective dimensions;-projective modules;
 Language
English
 Cited by
1.
DC-projective dimensions, Foxby equivalence and SDC-projective modules, Journal of Algebra and Its Applications, 2016, 15, 06, 1650111  crossref(new windwow)
 References
1.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, Berlin, 1992.

2.
M. Auslander and M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, No. 94 American Mathematical Society, Providence, R.I. 1969.

3.
L. W. Christensen, Gorenstein Dimensions, Springer, Berlin, 2000.

4.
L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and flat dimensions-a functorial description with applications, J. Algebra 302 (2006), no. 1, 231-279. crossref(new window)

5.
N. Ding, Y. Li, and L. Mao, Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), no. 3, 323-338. crossref(new window)

6.
N. Ding and L. Mao, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. crossref(new window)

7.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, 2000.

8.
H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267-284.

9.
Y. Geng and N. Ding, W-Gorenstein modules, J. Algebra 325 (2011), 132-146. crossref(new window)

10.
J. Gillespie, Model structures on modules over Ding-Chen rings, Homology, Homotopy Appl. 12 (2010), no. 1, 61-73. crossref(new window)

11.
E. S. Golod, G-dimension and generalized perfect ideals, Algebraic geometry and its applications, Trudy Mat. Inst. Steklov. 165 (1984), 62-66.

12.
H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. crossref(new window)

13.
H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808.

14.
H. Holm and Jorgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423-445. crossref(new window)

15.
N. Mahdou and M. Tamekkante, Strongly Gorenstein flat modules and dimensions, Chin. Ann. Math. Ser. B 32 (2011), no. 4, 533-548. crossref(new window)

16.
K. Pinzon, Absolutely pure covers, Comm. Algebra 36 (2008), no. 6, 2186-2194. crossref(new window)

17.
J. J. Rotman, An Introductions to Homological Algebra, Academic Press, New York, 1979.

18.
W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Publishing Co., Amsterdam, 1974.

19.
D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2 (2010), no. 1, 111-137. crossref(new window)