JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPECTRAL DECOMPOSITION OF k-TYPE NONWANDERING SETS FOR ℤ2-ACTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPECTRAL DECOMPOSITION OF k-TYPE NONWANDERING SETS FOR ℤ2-ACTIONS
Kim, Daejung; Lee, Seunghee;
  PDF(new window)
 Abstract
We prove that the set of k-type nonwandering points of a Z2-action T can be decomposed into a disjoint union of closed and T-invariant sets such that is topologically k-type transitive for each , if T is expansive and has the shadowing property.
 Keywords
spectral decomposition theorem;k-type nonwandering sets;expansive;shadowing property;
 Language
English
 Cited by
1.
Spectral decomposition theorem in equicontinuous nonautonomous discrete dynamical systems, Journal of Difference Equations and Applications, 2016, 22, 5, 676  crossref(new windwow)
2.
On collective sensitivity for -actions, Dynamical Systems, 2016, 31, 2, 221  crossref(new windwow)
 References
1.
N. Aoki and K.Hiraide, Topological Theory of Dynamical Systems, Recent advances, North-Holland Mathematical Library, 52, North-Holland Publising Co., Amesterdam, 1994.

2.
L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992.

3.
T. Das, K. Lee, D. Richeson, and J. Wiseman, Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces, Topology Appl. 160 (2013), no. 1, 149-158. crossref(new window)

4.
P. Diamond, K. Lee, and Y. Han, Bishadowing and hyperbolicity, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 8, 1779-1788. crossref(new window)

5.
K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67 (2003), no. 1, 15-26. crossref(new window)

6.
P. Oprocha, Shadowing in multi-dimensional shift spaces, Colloq. Math. 110 (2008), no. 2, 451-460. crossref(new window)

7.
P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Contin. Dyn. Syst. 20 (2008), no. 4, 1039-1056. crossref(new window)

8.
S. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math. 1706, Springer, 1999.

9.
S. Pilyugin and S. Tikhomirov, Shadowing in actions of some abelian groups, Fund. Math. 179 (2003), no. 1, 83-96. crossref(new window)

10.
R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971), 177-209. crossref(new window)

11.
K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics 128, Birkhuser Verlag, Basel, 1995.

12.
P. Walters, On the pseudo-orbit tracing property and its relationship to stability, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1997), 231-244, Lecture Notes in Math., 668, Springer, Berlin, 1978.