JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE MULTIPLE HURWITZ-EULER ETA FUNCTIONS AND THE SUMS OF PRODUCTS OF THE EULER NUMBERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE MULTIPLE HURWITZ-EULER ETA FUNCTIONS AND THE SUMS OF PRODUCTS OF THE EULER NUMBERS
Son, Jin-Woo;
  PDF(new window)
 Abstract
We establish a new approach for the sums of products of the Euler numbers by using the relation of values at non-positive integers of the representation of the multiple Hurwitz-Euler eta function in terms of the Hurwitz-Euler eta function.
 Keywords
Euler numbers;Hurwitz-Euler eta function;multiple Hurwitz-Euler eta function;sums of products;
 Language
English
 Cited by
 References
1.
J. Choi and H. M. Srivastava, The multiple Hurwitz zeta function and the multiple Hurwitz-Euler eta function, Taiwanese J. Math. 15 (2011), no. 2, 501-522.

2.
K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory 60 (1996), no. 1, 23-41. crossref(new window)

3.
M. Eie, A note on Bernoulli numbers and Shintani generalized Bernoulli polynomials, Trans. Amer. Math. Soc. 348 (1996), no. 3, 1117-1136. crossref(new window)

4.
M.-S. Kim, A note on sums of products of Bernoulli numbers, Appl. Math. Lett. 24 (2011), no. 1, 55-61. crossref(new window)

5.
M.-S. Kim and S. Hu, Sums of products of Apostol-Bernoulli numbers, Ramanujan J. 28 (2012), no. 1, 113-123. crossref(new window)

6.
A. Petojevic, New sums of products of Bernoulli numbers, Integral Transforms Spec. Funct. 19 (2008), no. 1-2, 105-114. crossref(new window)

7.
H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 1, 77-84. crossref(new window)

8.
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, 2001.

9.
H. M. Srivastava and A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004), no. 4, 375-380. crossref(new window)