JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LOCAL COMPLETENESS, LOWER SEMI CONTINUOUS FROM ABOVE FUNCTIONS AND EKELAND`S PRINCIPLE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LOCAL COMPLETENESS, LOWER SEMI CONTINUOUS FROM ABOVE FUNCTIONS AND EKELAND`S PRINCIPLE
Bosch, Carlos; Leal, Rene;
  PDF(new window)
 Abstract
In this paper we prove Ekeland`s variational principle in the setting of locally complete spaces for lower semi continuous functions from above and bounded below. We use this theorem to prove Caristi`s fixed point theorem in the same setting and also for lower semi continuous functions.
 Keywords
locally complete spaces;lower semi-continuity from above;variational principle;fixed point;minimization;equilibrium;
 Language
English
 Cited by
 References
1.
S. Al-Homidan, Q. H. Ansari, and J.-C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. 69 (2008), no. 1, 126-139. crossref(new window)

2.
M. Bianchi, G. Kassey, and R. Pini, Existence of equilibria via Ekeland's principle, J. Math. Anal. Appl. 284 (2003), 690-697. crossref(new window)

3.
C. Bosch, A. Garcia, and C. L. Garcia, An extension of Ekeland's variational principle to locally complete spaces, J. Math. Anal. Appl. 328 (2007), 106-108. crossref(new window)

4.
C. Bosch, A. Garcia, C. Gomez-Wulschner, and S. Hernandez-Linares, Equivalents to Ekeland's variational principle in locally complete spaces, Sci. Math. Japn. 72 (2010), no. 3, 283-287.

5.
Y. Chen, Y. J. Cho, and L. Yang, Note on the results with lower semi-continuity, Bull. Korean Math. Soc. 39 (2002), no. 4, 535-541. crossref(new window)

6.
I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. crossref(new window)

7.
J. X. Fang, The variational principle and fixed point theorems in certain topological spaces, J. Math. Anal. Appl. 202 (1996), 398-412. crossref(new window)

8.
A. H. Hamel, Phelp's lemma, Danes'drop theorem and Ekeland's principle in locally convex spaces, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3025-3038. crossref(new window)

9.
A. H. Hamel, Equivalents to Ekeland's variational principle in uniform spaces, Nonlinear Anal. 62 (2005), no. 5, 913-924. crossref(new window)

10.
H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.

11.
P. Perez-Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland, Amsterdam, 1987.

12.
J. H. Qiu, Local completeness and drop theorem, J. Math. Anal. Appl. 266 (2002), no. 2, 288-297. crossref(new window)

13.
J. H. Qiu, Ekeland's variational principle in locally complete spaces, Math. Nachr. 257 (2003), 55-58. crossref(new window)

14.
J. H. Qiu, Local completeness, drop theorem and Ekeland's variational principle, J. Math. Anal. Appl. 311 (2005), no. 1, 23-39. crossref(new window)