JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A CLASS OF ARITHMETIC FUNCTIONS ON PSL2(ℤ), II
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A CLASS OF ARITHMETIC FUNCTIONS ON PSL2(ℤ), II
Spiegelhalter, Paul; Zaharescu, Alexandru;
  PDF(new window)
 Abstract
Atanassov introduced the irrational factor function and the strong restrictive factor function, which he defined as and in [2] and [3]. Various properties of these functions have been investigated by Alkan, Ledoan, Panaitopol, and the authors. In the prequel, we expanded these functions to a class of elements of , and studied some of the properties of these maps. In the present paper we generalize the previous work by introducing real moments and considering a larger class of maps. This allows us to explore new properties of these arithmetic functions.
 Keywords
;Dirichlet series;
 Language
English
 Cited by
1.
Analytic continuation and asymptotics of Dirichlet series with partitions, Journal of Mathematical Analysis and Applications, 2016, 433, 1, 74  crossref(new windwow)
 References
1.
E. Alkan, A. H. Ledoan, and A. Zaharescu, Asymptotic behavior of the irrational factor, Acta Math. Hungar. 121 (2008), no. 3, 293-305. crossref(new window)

2.
K. T. Atanassov, Irrational factor: definition, properties and problems, Notes Number Theory Discrete Math. 2 (1996), no. 3, 42-44.

3.
K. T. Atanassov, Restrictive factor: definition, properties and problems, Notes Number Theory Discrete Math. 8 (2002), no. 4, 117-119.

4.
K. Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. 85 (2002), no. 3, 565-633. crossref(new window)

5.
K. Ford, Zero-free regions for the Riemann zeta function, Number theory for the millennium, II (Urbana, IL, 2000), 25-56, A K Peters, Natick, MA, 2002.

6.
G. H. Hardy and E. M.Wright, An Introduction to the Theory of Numbers, Sixth edition, Oxford University Press, Oxford, 2008.

7.
N. M. Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk 13 (1958), no. 4, 185-192.

8.
A. Ledoan and A. Zaharescu, Real moments of the restrictive factor, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 4, 559-566. crossref(new window)

9.
L. Panaitopol, Properties of the Atanassov functions, Adv. Stud. Contemp. Math. (Kyungshang) 8 (2004), no. 1, 55-58.

10.
P. Spiegelhalter and A. Zaharescu, Strong and weak Atanassov pairs, Proc. Jangjeon Math. Soc. 14 (2011), no. 3, 355-361.

11.
P. Spiegelhalter and A. Zaharescu, A class of arithmetic functions on $PSL_2(\mathbb{Z})$, To appear in: Bull. Korean Math. Soc.

12.
E. C. Titchmarsh, The Theory of Functions, Oxford University Press, London, 1939.

13.
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Second Edition, The Clarendon Press Oxford University Press, New York, 1986.

14.
I. M. Vinogradov, A new estimate of the function $z{\eta}(1+it)$, Izv. Akad. Nauk SSSR. Ser. Mat. 22 (1958), 161-164.

15.
A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutsche Verlag der Wissenschaften, Berlin, 1963.