JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HOPF BIFURCATION OF CODIMENSION ONE AND DYNAMICAL SIMULATION FOR A 3D AUTONOMOUS CHAOTIC SYSTEM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HOPF BIFURCATION OF CODIMENSION ONE AND DYNAMICAL SIMULATION FOR A 3D AUTONOMOUS CHAOTIC SYSTEM
Li, Xianyi; Zhou, Zhengxin;
  PDF(new window)
 Abstract
In this paper, a 3D autonomous system, which has only stable or non-hyperbolic equilibria but still generates chaos, is presented. This system is topologically non-equivalent to the original Lorenz system and all Lorenz-type systems. This motivates us to further study some of its dynamical behaviors, such as the local stability of equilibrium points, the Lyapunov exponent, the dissipativity, the chaotic waveform in time domain, the continuous frequency spectrum, the Poincar map and the forming mechanism for compound structure of its special cases. Especially, with the help of the Project Method, its Hopf bifurcation of codimension one is in detailed formulated. Numerical simulation results not only examine the corresponding theoretical analytical results, but also show that this system possesses abundant and complex dynamical properties not solved theoretically, which need further attention.
 Keywords
3D autonomous system;chaos;Hopf bifurcation of codimension one;project method;Lyapunov exponent;
 Language
English
 Cited by
1.
On singular orbits and a given conjecture for a 3D Lorenz-like system, Nonlinear Dynamics, 2015, 80, 1-2, 969  crossref(new windwow)
 References
1.
G. Alvarez, S. Li, F. Montoya, G. Pastor, and M. Romera, Breaking projective chaos sychronization secure communication using filtering and generalized synchronization, Chaos Solitons Fractals 24 (2005), no. 3, 775-783. crossref(new window)

2.
H. Asakura, K. Takemura, Z. Yoshida, and T. Uchida, Collisionless heating of electrons by meandering chaos and its application to a low-pressure Plasma source, Jpn. J. Appl. Phys. 36 (1997), 4493-4496. crossref(new window)

3.
S. Celikovsky and G. Chen, On a generalized Lorenz canonical form of chaotic systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 8, 1789-1812. crossref(new window)

4.
S. Celikovsky and G. Chen, Hyperbolic-type generalized Lorenz system and its canonical form, Proc. 15th Triennial World Congrss of IFAC, Barcelona, Spain, (2002b), in CD ROM.

5.
S. Celikovsky and G. Chen, On the generalized Lorenz canonical form, Chaos Solitons Fractals 26 (2005), no. 5, 1271-1276. crossref(new window)

6.
S. Celikovsky and A. Vaecek, Bilinear systems and chaos, Kybernetika 30 (1994), no. 4, 403-424.

7.
S. Celikovsky and A. Vaecek, Control Systems: from linear analysis to synthesis of chaos, London, Prentice-Hall, 1996.

8.
G. Chen and T. Ueta, Yet another chaotic attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 7, 1465-1466. crossref(new window)

9.
G. Chen and T. Ueta, Bifurcation analysis of Chen's equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 10 (2000), no. 8, 1917-1931.

10.
L. O. Chua, M. Itoh, L. Kovurev, and K. Eckert, Chaos synchronization in Chua's circuit, J. Circuits Systems Comput. 3 (1993), no. 1, 93-108. crossref(new window)

11.
K. Huang and G. Yang, Stability and Hopf bifurcation analysis of a new system, Chaos Solitons Fractals 39 (2009), no. 2, 567-578. crossref(new window)

12.
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, second edition, Springer-Verlag, New York, 1998.

13.
C. Li and G. Chen, A note on Hopf bifurcation in Chen's system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 6, 1609-1615. crossref(new window)

14.
T. Li, G. Chen, and Y. Tang, Complex dynamical behaviors of the chaotic Chen's system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 9, 2561-2574. crossref(new window)

15.
T. Li, G. Chen, and Y. Tang, On stability and bifurcation of Chen's system, Chaos Solitons Fractals 19 (2004), no. 5, 1269-1282. crossref(new window)

16.
X. Li and Q. Ou, Dynamical properties and simulation of a new Lorenz-like chaotic system, Nonlinear Dynam. 65 (2011), no. 3, 255-270. crossref(new window)

17.
C. Liu, T. Liu, L. Liu, and K. Liu, A new chaotic attractor, Chaos Solitons Fractals 22 (2004), no. 5 1031-1038. crossref(new window)

18.
E. N. Lorenz, Deterministic non-periodic flow, J. Atmospheric Sci. 20 (1963), 130-141. crossref(new window)

19.
J. Lu and G. Chen, A new chaotic attractor coined, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 3, 659-661. crossref(new window)

20.
J. Lu, G. Chen, and S. Zhang, The compound structure of a new chaotic attractor, Chaos Solitons Fractals 14 (2002), no. 5, 669-672. crossref(new window)

21.
J. Lu, T. Zhou, G. Chen, and S. Zhang, Local bifurcations of the Chen system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 10, 2257-2270. crossref(new window)

22.
B. Munmuangsaen and B. Srisuchinwong, A new five-term simple chaotic attractor, Phys. Lett. A 373 (2009), 4038-4043. crossref(new window)

23.
J. M. Ottino, C. W.Leong, H. Rising, and P. D. Swanson, Morphological structures produced by mixing in chaotic flows, Nature 333 (1988), 419-425. crossref(new window)

24.
O. E. Rossler, An equation for continuous chaos, Phys. Lett. A 57 (1976), 397-398. crossref(new window)

25.
C. P. Silva, Silnikov theorem-a tutorial, IEEE Trans. Circuits Systems I Fund. Theory Appl. 40 (1993), no. 10, 657-682. crossref(new window)

26.
L. P. Silnikov, A case of the existence of a countable number of periodic motions, Sov. Math. Docklady 6 (1965), 163-166.

27.
L. P. Silnikov, A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type, Math. USSR-Shornik 10 (1970), 91-102. crossref(new window)

28.
C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Applied Mathematical Sciences, 41. Springer-Verlag, New York-Berlin, 1982.

29.
J. C. Sprott, Some simple chaotic flows, Phys. Rev. E (3) 50 (1994), no. 2, R647-R650. crossref(new window)

30.
J. C. Sprott, Simplest dissipative chaotic flow, Phys. Lett. A 228 (1997), no. 4-5, 271-274. crossref(new window)

31.
J. C. Sprott, A new class of chaotic circuit, Phys. Lett. A 266 (2000), 19-23. crossref(new window)

32.
G. Tigan and D. Constantinescu, Heteroclinic orbits in the T and the Lu system, Chaos Solitons Fractals 42 (2009), no. 1, 20-23. crossref(new window)

33.
G. van der Schrier and L. Maas, The diffusionless Lorenz equations; Shilnikov bifurcations and reduction to an explicit map, Phys. D 141 (2000), no. 1-2, 19-36. crossref(new window)

34.
A.Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D 16 (1985), no. 3, 285-317. crossref(new window)

35.
Z. Wei and Q. Yang, Dynamics of a new autonomous 3-D chaotic system only with stable equilibria, Nonl. Anal.: Real World Applications 12 (2011), 106-118. crossref(new window)

36.
Q. Yang and G. Chen, A chaotic system with one saddle and two stable node-foci, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 5, 1393-1414. crossref(new window)

37.
Q. Yang, G. Chen, and Y. Zhou, A unified Lorenz-type system and its canonical form, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 (2006), no. 10, 2855-1871. crossref(new window)

38.
Y. Yu and S. Zhang, Hopf bifurcation in the Lu system, Chaos Solitons Fractals 17 (2003), no. 5, 901-906. crossref(new window)

39.
Y. Yu and S. Zhang, Hopf bifurcation analysis of the Lu system, Chaos Solitons Fractals 21 (2004), no. 5, 1215-1220. crossref(new window)