JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FIXED POINT SOLUTION METHODS FOR SOLVING EQUILIBRIUM PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FIXED POINT SOLUTION METHODS FOR SOLVING EQUILIBRIUM PROBLEMS
Anh, Pham Ngoc; Hien, Nguyen Duc;
  PDF(new window)
 Abstract
In this paper, we propose new iteration methods for finding a common point of the solution set of a pseudomonotone equilibrium problem and the solution set of a monotone equilibrium problem. The methods are based on both the extragradient-type method and the viscosity approximation method. We obtain weak convergence theorems for the sequences generated by these methods in a real Hilbert space.
 Keywords
equilibrium problems;monotone;pseudomonotone;Lipschitz-type continuous;fixed point;
 Language
English
 Cited by
1.
On ergodic algorithms for equilibrium problems, Journal of Global Optimization, 2016, 64, 1, 179  crossref(new windwow)
 References
1.
P. N. Anh, An LQ regularization method for pseudomonotone equilibrium problems on polyhedra, Vietnam J. Math. 36 (2008), no. 2, 209-228.

2.
P. N. Anh, A logarithmic quadratic regularization method for pseudomonotone equilibrium problems, Acta Math. Vietnam. 34 (2009), no. 2, 183-200.

3.
P. N. Anh, Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities, J. Optim. Theory Appl. 154 (2012), no. 1, 303-320. crossref(new window)

4.
P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization 62 (2013), no. 2, 271-283. crossref(new window)

5.
P. N. Anh and N. D. Hien, The extragradient-Armijo method for pseudomonotone equilibrium problems and strict pseudocontractions, Fixed Point Theory Appl. 2012 (2012), 82, 16 pp. crossref(new window)

6.
P. N. Anh and J. K. Kim, Outer approximation algorithms for pseudomonotone equilibrium problems, Comp. Math. Appl. 61 (2011), no. 9, 2588-2595. crossref(new window)

7.
P. N. Anh, J. K. Kim, and J. M. Nam, Strong convergence of an extended extragradient method for equilibrium problems and fixed point problems, J. Korean Math. Soc. 49 (2012), no. 1 187-200. crossref(new window)

8.
P. N. Anh and D. X. Son, A new method for a finite family of pseudocontractions and equilibrium problems, J. Appl. Math. Inform. 29 (2011), no. 5-6, 1179-1191.

9.
E. Blum and W. Oettli, From optimization and variational inequality to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.

10.
L. C. Ceng, P. Cubiotti, and J. C. Yao, An implicit iterative scheme for monotone variational inequalities and fixed point problems, Nonlinear Anal. 69 (2008), no. 8, 2445- 2457. crossref(new window)

11.
Y. J. Cho and N. Petrot, On the System of nonlinear mixed implicit equilibrium problems in Hilbert spaces, J. Inequal. Appl. 2010 (2010), Article ID 437976, 12 pages.

12.
P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.

13.
M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program. 53 (1992), no. 1, Ser. A, 99-110. crossref(new window)

14.
I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer-Verlag, Berlin, 2000.

15.
I. V. Konnov, Application of the proximal point method to nonmonotone equilibrium problems, J. Optim. Theory Appl. 119 (2003), no. 2, 317-333. crossref(new window)

16.
G. Mastroeni, On auxiliary principle for equilibrium problems, In: P. Daniele, F. Giannessi, and A. Maugeri (eds.), Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.

17.
A. Moudafi, Proximal point algorithm extended to equilibrium problem, J. Nat. Geom. 15 (1999), no. 1-2, 91-100.

18.
T. T. V Nguyen, J. J. Strodiot, and V. H. Nguyen, A bundle method for solving equilibrium problems, Math. Program. 116 (2009), 529-552. crossref(new window)

19.
M. A. Noor, Auxiliary principle technique for equilibrium problems, J. Optim. Theory Appl. 122 (2004), no. 2, 371-386. crossref(new window)

20.
T. D. Quoc, P. N. Anh, and L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim. 52 (2012), no. 1, 139-159. crossref(new window)

21.
S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515. crossref(new window)

22.
S. Takahashi and M. Toyoda, Weakly convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2013), 417-428.

23.
H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279-291. crossref(new window)