JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHARACTERIZATIONS AND THE MOORE-PENROSE INVERSE OF HYPERGENERALIZED K-PROJECTORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHARACTERIZATIONS AND THE MOORE-PENROSE INVERSE OF HYPERGENERALIZED K-PROJECTORS
Tosic, Marina;
  PDF(new window)
 Abstract
We characterize hypergeneralized k-projectors (i.e., $A^k
 Keywords
hypergeneralized k-projector;linear combination;the Moore-Penrose inverse;nonsingularity;
 Language
English
 Cited by
 References
1.
O. M. Baksalary, Revisitation of generalized and hypergeneralized projectors, Statistical Inference, Econometric Analysis and Matrix Algebra VI (2009), 317-324.

2.
J. K. Baksalary, O. M. Baksalary, and X. Liu, Further properties of generalized and hypergeneralized projectors, Linear Algebra Appl. 389 (2004), 295-303. crossref(new window)

3.
J. K. Baksalary, O. M. Baksalary, X. Liu, and G. Trenkler, Further results on generalized and hypergeneralized projectors, Linear Algebra Appl. 429 (2008), no. 5-6, 1038-1050. crossref(new window)

4.
J. Benitez, Moore-Penrose inverses and commuting elements of C*-algebras, J. Math. Anal. Appl. 345 (2008), no. 2, 766-770. crossref(new window)

5.
J. Benitez and N. Thome, Characterizations and linear combinations of k-generalized projectors, Linear Algebra Appl. 410 (2005), 150-159. crossref(new window)

6.
J. Benitez and N. Thome, {k}-group periodic matrices, SIAM. J. Matrix Anal. Appl. 28 (2006), no. 1, 9-25. crossref(new window)

7.
A. Berman, Nonnegative matrices which are equal to their generalized inverse, Linear Algebra Appl. 9 (1974), 261-265. crossref(new window)

8.
S. L. Campbell and C. D. Meyer Jr., Generalized Inverses of Linear Transformations, Pitman, London, 1979.

9.
C. Y. Deng, Q. H. Li, and H. K. Du, Generalized n-idempotents and Hyper-generalized n-idempotents, Northeast. Math. J. 22 (2006), no. 4, 387-394.

10.
T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8 (1966), 518-521. crossref(new window)

11.
J. GroB and G. Trenkler, Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997), 463-474. crossref(new window)

12.
R. E. Hartwig and K. Spindelbock, Matrices for which A* and $A{\dagger}$ commute, Linear Multilinear Algebra 14 (1983), no. 3, 241-256. crossref(new window)

13.
M. Tosic and D. S. Cvetkovic-Ilic, The invertibility of the difference and the sum of commuting generalized and hypergeneralized projectors, Linear Multilinear Algebra 61 (2013), no. 4, 482-493. crossref(new window)

14.
M. Tosic, D. S. Cvetkovic-Ilic, and C. Deng, The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors, Electron. J. Linear Algebra 22 (2011), 1129-1137.