JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME CHARACTERIZATIONS OF COHEN-MACAULAY MODULES IN DIMENSION > s
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME CHARACTERIZATIONS OF COHEN-MACAULAY MODULES IN DIMENSION > s
Dung, Nguyen Thi;
  PDF(new window)
 Abstract
Let (R,m) be a Noetherian local ring and M a finitely generated R-module. For an integer s > -1, we say that M is Cohen-Macaulay in dimension > s if every system of parameters of M is an M-sequence in dimension > s introduced by Brodmann-Nhan [1]. In this paper, we give some characterizations for Cohen-Macaulay modules in dimension > s in terms of the Noetherian dimension of the local cohomology modules , the polynomial type of M introduced by Cuong [5] and the multiplicity e(;M) of M with respect to a system of parameters .
 Keywords
Cohen-Macaulay modules in dimension > s;M-sequence in dimension > s;multiplicity;Noetherian dimension;local cohomology modules;
 Language
English
 Cited by
 References
1.
M. Brodmann and L. T. Nhan, A finiteness result for associated primes of certain Ext-modules, Comm. Algebra 36 (2008), no. 4, 1527-1536. crossref(new window)

2.
M. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, 1998.

3.
W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.

4.
N. T. Cuong, On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing Complexes, Math. Proc. Cambridge. Philos. Soc. 109 (1991), no. 3, 479-488. crossref(new window)

5.
N. T. Cuong, On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain system of parameters in local rings, Nagoya Math. J. 125 (1992), 105-114.

6.
N. T. Cuong, M. Morales, and L. T. Nhan, On the length of generalized fractions, J. Algebra 265 (2003), no. 1, 100-113. crossref(new window)

7.
N. T. Cuong and L. T. Nhan, On Noetherian dimension of Artinian modules, Vietnam J. Math. 30 (2002), no. 2, 121-130.

8.
N. T. Cuong, L. T. Nhan, and N. T. K. Nga, On pseudo supports and non-Cohen-Macaulay locus of finitely generated modules, J. Algebra 323 (2010), no. 10, 3029-3038. crossref(new window)

9.
N. T. Cuong, P. Schenzel, and N. V. Trung, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73. crossref(new window)

10.
D. Ferrand and M. Raynaud, Fibres formelles d'un anneau local Noetherian, Ann. Sci. Ec. Norm. Sup. (4) 3 (1970), 295-311.

11.
M. Hellus, On the set of associated primes of a local cohomology modules, J. Algebra 237 (2001), no. 1, 406-419. crossref(new window)

12.
T. Kawasaki, On arithmetic Macaulayfication of Noetherian rings, Trans. Amer. Math. Soc. 354 (2002), no. 1, 123-149. crossref(new window)

13.
D. Kirby, Dimension and length for Artinian modules, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 164, 419-429. crossref(new window)

14.
R. Lu and Z. Tang, The f-depth of an ideal on a module, Proc. Amer. Math. Soc. 130 (2002), no. 7, 1905-1912. crossref(new window)

15.
I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 23-43. Academic Press, London, 1973.

16.
H. Matsumura, Commutative Ring Theory, Cambridge, Cambridge University Press, 1986.

17.
L. T. Nhan, On generalized regular sequences and the finiteness for associated primes of local cohomology modules, Comm. Algebra 33 (2005), no. 3, 793-806. crossref(new window)

18.
L. T. Nhan and M. Morales, Generalized f-modules and the associated prime of local cohomology modules, Comm. Algebra 34 (2006), no. 3, 863-878. crossref(new window)

19.
R. N. Roberts, Krull dimension for Artinian modules over quasi-local commutative rings, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 103, 269-273. crossref(new window)

20.
N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math J. 102 (1986), 1-49.

21.
N. Zamani, Cohen-Macaulay modules in dimension > s and results on local cohomology, Comm. Algebra 37 (2009), no. 4, 1297-1307. crossref(new window)