JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION
Kim, Sang Dong; Hessari, Peyman; Shin, Byeong-Chun;
  PDF(new window)
 Abstract
The spectral collocation method for a second order elliptic boundary value problem on a domain with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.
 Keywords
spectral collocation method;Gordon and Hall transformation;elliptic equation;
 Language
English
 Cited by
1.
Least-squares spectral element preconditioners for fourth order elliptic problems, Computers & Mathematics with Applications, 2017, 74, 3, 482  crossref(new windwow)
2.
First order system least squares method for the interface problem of the Stokes equations, Computers & Mathematics with Applications, 2014, 68, 3, 309  crossref(new windwow)
3.
First order system least squares pseudo-spectral method for Stokes–Darcy equations, Applied Numerical Mathematics, 2017, 120, 35  crossref(new windwow)
4.
Pseudospectral Least Squares Method for Stokes--Darcy Equations, SIAM Journal on Numerical Analysis, 2015, 53, 3, 1195  crossref(new windwow)
5.
Least-squares spectral method for velocity-vorticity-pressure form of the Stokes equations, Numerical Methods for Partial Differential Equations, 2016, 32, 2, 661  crossref(new windwow)
6.
Analysis of least squares pseudo-spectral method for the interface problem of the Navier–Stokes equations, Computers & Mathematics with Applications, 2015, 69, 8, 838  crossref(new windwow)
 References
1.
C. Canuto, P. Gervasio, and A. Quarteroni, Finite element preconditioning of G-NI spectral methods, SIAM J. Sci. Comput. 31 (2009/10), no. 6, 4422-4451.

2.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.

3.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods, Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.

4.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods, Evolutions to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin, 2007.

5.
M. O. Deville and E. H. Mund, Finite-element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. Statist. Comput. 11 (1990), no. 2, 311-342. crossref(new window)

6.
W. Fleming, Functions of Several Variables, Addison-Wesley, Reading, Mass., 1965.

7.
D. Funaro, Spectral elements for transport-dominated equations, Lecture notes in computational science and engineering, Vol. 1, Springer-Verlag, Berlin/Heidelberg, 1997.

8.
W. J. Gordon and C. A. Hall, Transfinite element methods: Blending function interpolation over arbitrary curved element domains, Numer. Math. 21 (1973), 109-129. crossref(new window)

9.
W. J. Gordon and C. A. Hall, Geometric aspects of the finite element method: construction of curvilinear coordinate systems and their application to mesh generation, Int. J. Numer. Meth. Eng. 7 (1973), 461-477. crossref(new window)

10.
W. Heinrichs, Spectral collocation scheme on the unit disc, J. Comput. Phys. 199 (2004), no. 1, 66-86. crossref(new window)

11.
S. D. Kim and S. V. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal. 33 (1996), no. 6, 2375-2400. crossref(new window)

12.
T. A. Manteuffel and J. Otto, Optimal equivalent preconditioners, SIAM J. Numer. Anal. 30 (1993), no. 3, 790-812. crossref(new window)

13.
T. A. Manteuffel and S. V. Parter, Preconditioning and boundary conditions, SIAM J. Numer. Anal. 27 (1990), no. 3, 656-694. crossref(new window)

14.
Y. Morochoisne, Resolution des equations de Navier-Stokes par une methode pseudo-spectrale en espace-temps, Rech. Aerospat. 1979 (1979), no. 5, 293-306.

15.
S. A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys. 37 (1980), no. 1, 70-92. crossref(new window)

16.
S. V. Parter and E. E. Rothman, Preconditioning Legendre spectral collocation approximation to elliptic problems, SIAM J. Numer. Anal. 32 (1995), no. 2, 333-385. crossref(new window)

17.
S. V. Parter, Preconditioning Legendre spectral collocation methods for elliptic problems I. Finite differenc operators, SIAM J. Numer. Anal. 39 (2001), no. 1, 330-347. crossref(new window)

18.
S. V. Parter, Preconditioning Legendre spectral collocation methods for elliptic problems II. Finite element operators, SIAM J. Numer. Anal. 39 (2001), no. 1, 348-362. crossref(new window)

19.
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 1994.

20.
W. R. Wade, An Introduction to Analysis, third edition, Prentice Hall, 2004.