JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WHEN AN -CLOSED SUBMODULE IS A DIRECT SUMMAND
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WHEN AN -CLOSED SUBMODULE IS A DIRECT SUMMAND
Wang, Yongduo; Wu, Dejun;
  PDF(new window)
 Abstract
It is well known that a direct sum of CLS-modules is not, in general, a CLS-module. It is proved that if , where and are CLS-modules such that and are relatively ojective (or is -ejective), then M is a CLS-module and some known results are generalized.
 Keywords
CLS-module;ejective module;ojective module;
 Language
English
 Cited by
 References
1.
E. Akalan, G. F. Birkenmeier, and A. Tercan, Goldie extending modules, Comm. Algebra 37 (2009), no. 2, 663-683. crossref(new window)

2.
G. F. Birkenmeier and A. Tercan, When some complement of a submodule is a summand, Comm. Algebra 35 (2007), no. 2, 597-611. crossref(new window)

3.
K. R. Goodearl, Ring Theory, Marcel-Dekker, New York, 1976.

4.
A. Harmanci and P. F. Smith, Finite direct sums of CS-modules, Houston J. Math. 19 (1993), no. 4, 523-532.

5.
M. A. Kamal and B. J. Muller, Extending modules over commutative domains, Osaka J. Math. 25 (1988), no. 3, 531-538.

6.
S. H. Mohamed and B. J. Muller, Ojective modules, Comm. Algebra 30 (2002), no. 4, 1817-1827. crossref(new window)

7.
P. F. Smith and A. Tercan, Continuous and quasi-continuous modules, Houston J. Math. 18 (1992), no. 3, 339-348.

8.
A. Tercan, On CLS-modules, Rocky Mountain J. Math. 25 (1995), no. 4, 1557-1564. crossref(new window)