JOURNAL BROWSE
Search
Advanced SearchSearch Tips
T-NEIGHBORHOODS IN VARIOUS CLASSES OF ANALYTIC FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
T-NEIGHBORHOODS IN VARIOUS CLASSES OF ANALYTIC FUNCTIONS
Shams, Saeid; Ebadian, Ali; Sayadiazar, Mahta; Sokol, Janusz;
  PDF(new window)
 Abstract
Let be the class of analytic functions f in the open unit disk
 Keywords
analytic functions;univalent;starlike;convex;close-to-convex;concave functions;neighborhood;-neighborhood;T-factor;
 Language
English
 Cited by
1.
Univalence of Integral Operators on Neighborhoods of Analytic Functions, Iranian Journal of Science and Technology, Transactions A: Science, 2017  crossref(new windwow)
 References
1.
F. G. Avkhadiev, Ch. Pommerenke, and K. J. Wirths, On the coefficients of concave univalent functions, Math. Nachr. 271 (2004), 3-9. crossref(new window)

2.
F. G. Avkhadiev, Ch. Pommerenke, and K. J. Wirths, Sharp inequalities for the coefficients of concave schlicht functions, Comment. Math. Helv. 81 (2006), no. 4, 801-807.

3.
F. G. Avkhadiev and K. J. Wirths, Convex holes produce lower bound for coefficients, Complex Var. Theory Appl. 47 (2002), no. 7, 553-563. crossref(new window)

4.
U. Bednarz, Stability of the Hadamard product of k-uniformly convex and k-starlike functions in certain neighbourhood, Demonstratio Math. 38 (2005), no. 4, 837-845.

5.
U. Bednarz and S. Kanas, Stability of the integral convolution of k-uniformly convex and k-starlike functions, J. Appl. Anal. 10 (2004), no. 1, 105-115.

6.
U. Bednarz and J. Sokol, On the integral convolution of certain classes of analytic functions, Taiwanese J. Math. 13 (2009), no. 5, 1387-1396. crossref(new window)

7.
U. Bednarz and J. Sokol, T-neighborhoods of analytic functions, J. Math. Appl. 32 (2010), 25-32.

8.
A. Bielecki and Z. Lewandowski, Sur une generalisation de quelques theoremes de M. Biernacki sur les fonctions analytiques, Ann. Polon. Math. 12 (1962), 65-70. crossref(new window)

9.
P. L. Duren, Univalent functions, Springer Verlag, Grund. math. Wiss. 259, New York, Berlin, Heidelberg, Tokyo, 1983.

10.
R. Fournier, A note on neighbourhoods of univalent functions, Proc. Amer. Math. Soc. 87 (1983), no. 1, 117-120. crossref(new window)

11.
R. Fournier, On neighbourhoods of univalent starlike functions, Ann. Polon. Math. 47 (1986), no. 20, 189-202. crossref(new window)

12.
R. Fournier, On neighbourhoods of univalent convex functions, Rocky Mountain J. Math. 16 (1986), no. 3, 579-589. crossref(new window)

13.
L. Lewin, Dilogarithms and Associated Functions, Macdonald, London, 1958.

14.
St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527. crossref(new window)

15.
S. Shams and S. R. Kulkarni, Certain properties of the class of univalent functions defined by Ruscheweyh derivative, Bull. Cal. Math. Soc. 97 (2005), no. 3, 223-234.

16.
T. Sheil-Small, On linear accessibility and the conformal mapping of convex domains, J. Analyse Math. 25 (1972), 259-276. crossref(new window)

17.
T. Sheil-Small and E. M. Silvia, Neighborhoods of analytic functions, J. Analyse Math. 52 (1989), 210-240.

18.
J. Stankiewicz, Neighbourhoods of meromorphic functions and Hadamard products, Ann. Polon. Math. 46 (1985), 317-331. crossref(new window)