JOURNAL BROWSE
Search
Advanced SearchSearch Tips
APPROXIMATION METHODS FOR A COMMON MINIMUM-NORM POINT OF A SOLUTION OF VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
APPROXIMATION METHODS FOR A COMMON MINIMUM-NORM POINT OF A SOLUTION OF VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS IN BANACH SPACES
Shahzad, N.; Zegeye, H.;
  PDF(new window)
 Abstract
We introduce an iterative process which converges strongly to a common minimum-norm point of solutions of variational inequality problem for a monotone mapping and fixed points of a finite family of relatively nonexpansive mappings in Banach spaces. Our theorems improve most of the results that have been proved for this important class of nonlinear operators.
 Keywords
monotone mappings;relatively nonexpansive mappings;strong convergence;variational inequality problems;
 Language
English
 Cited by
1.
An algorithm for finding a common point of the solutions of fixed point and variational inequality problems in Banach spaces, Arabian Journal of Mathematics, 2015, 4, 3, 199  crossref(new windwow)
 References
1.
Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, 15-50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.

2.
K. Aoyama, F. Kohsaka, and W. Takahashi, Proximal point method for monotone operators in Banach spaces, Taiwanese J. Math. 15 (2011), no. 1, 259-281.

3.
H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive and ${\alpha}$-inverse strongly monotone mappings, Nonlinear Anal. 61 (2005), no. 3, 341-350. crossref(new window)

4.
H. Iiduka and W. Takahashi, Strong convergence studied by a hybrid type method for monotone operators in a Banach space, Nonlinear Anal. 68 (2008), no. 12, 3679-3688. crossref(new window)

5.
H. Iiduka and W. Takahashi, Weak convergence of projection algorithm for variational inequalities in Banach spaces, J. Math. Anal. Appl.; DOI:10.1016/j.jmaa.2007.07.019. crossref(new window)

6.
H. Iiduka, W. Takahashi, and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Panamer. Math. J. 14 (2004), no. 2, 49-61.

7.
S. Kamimura, F. Kohsaka, and W. Takahashi, Weak and strong convergence theorems for maximal monotone operators in a Banach space, Set-Valued Anal. 12 (2004), no. 4, 417-429. crossref(new window)

8.
S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), no. 3, 938-945. crossref(new window)

9.
D. Kinderlehrer and G. Stampaccia, An Iteration to Variational Inequalities and Their Applications, Academic Press, New York, 1990.

10.
P. Kumam, A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping, Nonlinear Anal. Hybrid Syst. 2 (2008), no. 4, 1245-1255. crossref(new window)

11.
J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-517. crossref(new window)

12.
P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), no. 7-8, 899-912. crossref(new window)

13.
S. Y. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005), no. 2, 257-266. crossref(new window)

14.
S. Reich, A weak convergence theorem for the alternating method with Bregman distances, Theory and applications of nonlinear operators of accretive and monotone type, 313-318, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.

15.
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976), no. 5, 877-898. crossref(new window)

16.
A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl. 133 (2007), no. 3, 359-370. crossref(new window)

17.
W. Takahashi, Nonlinear Functional Analysis, Kindikagaku, Tokyo, 1988.

18.
W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. 70 (2009), no. 1, 45-57. crossref(new window)

19.
H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), no. 1, 109-113. crossref(new window)

20.
H. Zegeye and E. U. Ofoedu, and N. Shahzad, Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasinonexpansive mappings, Appl. Math. Comput. 216 (2010), no. 12, 3439-3449. crossref(new window)

21.
H. Zegeye and N. Shahzad, Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. 70 (2009), no. 7, 2707-2716. crossref(new window)

22.
H. Zegeye and N. Shahzad, A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems, Nonlinear Anal. 74 (2011), no. 1, 263-272. crossref(new window)

23.
H. Zegeye and N. Shahzad, A hybrid approximation method for equilibrium, variational inequality and fixed point problems, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 4, 619-630. crossref(new window)

24.
H. Zegeye and N. Shahzad, Approximating common solution of variational inequality problems for two monotone mappings in Banach spaces, Optim. Lett. 5 (2011), no. 4, 691-704. crossref(new window)

25.
H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in Banach spaces, Nonlinear Anal. 68 (2008), no. 10, 2977-2983. crossref(new window)