JOURNAL BROWSE
Search
Advanced SearchSearch Tips
QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS
Cui, Jian; Yin, Xiaobin;
  PDF(new window)
 Abstract
A ring R is called quasipolar if for every a 2 R there exists such that , and . The class of quasipolar rings lies properly between the class of strongly -regular rings and the class of strongly clean rings. In this paper, we determine when a matrix over a local ring is quasipolar. Necessary and sufficient conditions for a matrix ring to be quasipolar are obtained.
 Keywords
quasipolar ring;matrix ring;strongly clean ring;local ring;
 Language
English
 Cited by
 References
1.
G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean triangular matrix rings over local rings, J. Algebra 312 (2007), no. 2, 773-797. crossref(new window)

2.
G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. crossref(new window)

3.
J. Chen, X. Yang, and Y. Zhou, When is the $2{\times}2$ matrix ring over a commutative local ring strongly clean?, J. Algebra 301 (2006), no. 1, 280-293. crossref(new window)

4.
J. Chen, X. Yang, and Y. Zhou, On strongly clean matrix and triangular matrix rings, Comm. Algebra 34 (2006), no. 10, 3659-3674. crossref(new window)

5.
P. M. Cohn, Free Rings and Their Relations, 2nd edn, Academic Press, 1985.

6.
J. Cui and J. Chen, When is a $2{\times}2$ matrix ring over a commutative local ring quasipo- lar?, Comm. Algebra 39 (2011), no. 9, 3212-3221. crossref(new window)

7.
J. Cui and J. Chen, Characterizations of quasipolar rings, Comm. Algebra 41 (2013), no. 9, 3207- 3217. crossref(new window)

8.
M. F. Dischinger, Sur les anneaux fortement ${\pi}$-reguliers, C. R. Math. Acad. Sci. Paris 283 (1976), no. 8, 571-573.

9.
J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. crossref(new window)

10.
R. E. Harte, On quasinilpotents in rings, Panam. Math. J. 1 (1991), 10-16.

11.
J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), no. 1, 137-152. crossref(new window)

12.
B. Li, Strongly clean matrix rings over noncommutative local rings, Bull. korean Math. Soc. 46 (2009), no. 1, 71-78.

13.
Y. Li, Strongly clean matrix rings over local rings, J. Algebra 312 (2007), no. 1, 397-404. crossref(new window)

14.
W. K. Nicholson, Local group rings, Canad. Math. Bull. 15 (1972), 137-138. crossref(new window)

15.
W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. crossref(new window)

16.
Z. Wang and J. Chen, On two open problems about strongly clean rings, Bull. Aust. Math. Soc. 70 (2004), no. 2, 279-282. crossref(new window)

17.
X. Yang and Y. Zhou, Strong cleanness of the $2{\times}2$ matrix ring over a general local ring, J. Algebra 320 (2008), no. 6, 2280-2290. crossref(new window)

18.
Z. Ying and J. Chen, On quasipolar rings, Algebra Colloq. 19 (2012), no. 4, 683-692. crossref(new window)