JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS
Choi, Youngmi; Kim, Soohyun; Lee, Hyung-Chun;
  PDF(new window)
 Abstract
Finite element approximation solutions of the optimal control problems for stochastic Stokes equations with the forcing term perturbed by white noise are considered. Error estimates are established for the fully coupled optimality system using Brezzi-Rappaz-Raviart theory. Numerical examples are also presented to examine our theoretical results.
 Keywords
stochastic Stokes equations;optimal control;white noise;
 Language
English
 Cited by
 References
1.
F. Abergal and R. Temmam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics 1 (1990), 303-325. crossref(new window)

2.
R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

3.
I. Babuska and P. Chatzipantelidis, On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 37-38, 4093-4122. crossref(new window)

4.
I. Babuska, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal. 42 (2004), no. 2, 800-825. crossref(new window)

5.
I. Babuska, R. Tempone, and G. E. Zouraris, Solving elliptic boundary value problems with uncertain coecients by the finite element method: The stochastic formulation, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 12-16, 1251-1294. crossref(new window)

6.
F. Brezzi, J. Rappaz, and P. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions, Numer. Math. 36 (1980), 1-25. crossref(new window)

7.
Y. Cao, Z. Chen, and M. Gunzburger, Error analysis of finite element approximations of the stochastic Stokes equations, Adv. Comput. Math. 33 (2010), no. 2, 215-230. crossref(new window)

8.
Y. Cao, H. Yang, and L. Yin, Finite element methods for semilinear elliptic stochastic partial differential equations, Numer. Math. 106 (2007), no. 2, 181-198. crossref(new window)

9.
P. Ciarlet, Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

10.
P. Ciarlet, Introduction to Numerical Linear Algebra and Optimization, Cambridge, 1989.

11.
Y. Choi, H.-C. Lee, and S. D. Kim, Analysis and computations of least-squares method for optimal control problems for the Stokes equations, J. Korean Math. Soc. 46 (2009), no. 5, 1007-1025. crossref(new window)

12.
Y. Choi, H.-C. Lee, and B.-C. Shin, A least-square/penalty method for distributed optimal control problems for Stokes equations, Comput. Math. Appl. 53 (2007), no. 11, 1672-1685. crossref(new window)

13.
R. G. Ghanem and P. D. Spanos, Stochasic Finite Elements: A spectral approach, Springer-Verlag, 1991.

14.
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, 1986.

15.
M. D. Gunzburger and L. S. Hou, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control. Optim. 34 (1996), no. 3, 1001-1043. crossref(new window)

16.
M. D. Gunzburger, L. S. Hou, and T. P. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls, Math. Comp. 57 (1991), no. 195, 123-151. crossref(new window)

17.
M. Gunzburger, H.-C. Lee, and J. Lee, Error estimates of stochastic optimal neumann boundary control problems, SIAM J. Numer. Anal. 49 (2011), no. 4, 1532-1552. crossref(new window)

18.
M. D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal. 37 (2000), no. 5, 1481-1512. crossref(new window)

19.
L. S. Hou, J. Lee, and H. Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs, J. Math. Anal. Appl. 384 (2011), no. 1, 87-103. crossref(new window)

20.
H. -C. Lee, Analysis and computational methods of Dirichlet boundary optimal control problems for 2D Boussinesq equations, Adv. Comput. Math. 19 (2003), no. 1-3, 255-275. crossref(new window)

21.
H.-C. Lee and Y. Choi, A least-squares method for optimal control problems for a secondorder elliptic systems in two dimensions, J. Math. Anal. Appl. 242 (2000), no. 1, 105-128. crossref(new window)

22.
H.-C. Lee and O. Y. Imanuvilov, Analysis pf optimal control problems for 2D stationary Boussinesq equations, J. Math. Anal. Appl. 242 (2000), 191-211. crossref(new window)

23.
H.-C. Lee and S. Kim, Finite element approximation and computations of optimal dirichlet boundary control problems for the boussinesq equations, J. Korean Math. Soc. 41 (2004), no. 4, 681-715. crossref(new window)

24.
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971.

25.
H. Manouzi, A finite element approximation of linear stochastic PDEs driven by multiplicative white noise, Int. J. Comput. Math. 85 (2008), no. 3-4, 527-546. crossref(new window)

26.
H. Manouzi and L. S. Hou, An optimal control problem for stochastic linear PDEs driven by a Gaussian white noise, 629-636, Numerical Mathematics and Advanced Applications, Springer Berlin Heidelberg, 2008.

27.
G. Stefanou, The stochastic finite element method: Past, present, and future, Comput. Methods Appl. Mech. Engrg. 198 (2009), Issues 9-12, 1031-1051. crossref(new window)

28.
R. Temam, Nonlinear Functional Analysis and Navier-Stokes Equations, SIAM, Philadelphia, 1983.