JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MERIDIAN SURFACES IN 𝔼4 WITH POINTWISE 1-TYPE GAUSS MAP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MERIDIAN SURFACES IN 𝔼4 WITH POINTWISE 1-TYPE GAUSS MAP
Arslan, Kadri; Bulca, Betul; Milousheva, Velichka;
  PDF(new window)
 Abstract
In the present article we study a special class of surfaces in the four-dimensional Euclidean space, which are one-parameter systems of meridians of the standard rotational hypersurface. They are called meridian surfaces. We show that a meridian surface has a harmonic Gauss map if and only if it is part of a plane. Further, we give necessary and sufficient conditions for a meridian surface to have pointwise 1-type Gauss map and find all meridian surfaces with pointwise 1-type Gauss map.
 Keywords
Meridian surfaces;Gauss map;finite type immersions;pointwise 1-type Gauss map;
 Language
English
 Cited by
1.
SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP IN PSEUDO-GALILEAN SPACE,;;

대한수학회보, 2016. vol.53. 2, pp.519-530 crossref(new window)
1.
Meridian Surfaces with Constant Mean Curvature in Pseudo-Euclidean 4-Space with Neutral Metric, Mediterranean Journal of Mathematics, 2017, 14, 2  crossref(new windwow)
2.
A New Class of Time-Meridian Surfaces of Biharmonic − Particles and its Lorentz Transformation in Heisenberg Spacetime, International Journal of Theoretical Physics, 2015, 54, 10, 3811  crossref(new windwow)
3.
SURFACES OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS MAP IN PSEUDO-GALILEAN SPACE, Bulletin of the Korean Mathematical Society, 2016, 53, 2, 519  crossref(new windwow)
 References
1.
K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, and G. Ozturk, Vranceanu Surface in $E^4$ with Pointwise 1-type Gauss map, Indian J. Pure Appl. Math. 42 (2011), no. 1, 41-51. crossref(new window)

2.
C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), no. 3, 355-359. crossref(new window)

3.
C. Baikoussis, B.-Y. Chen, and L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16 (1993), no. 2, 341-349. crossref(new window)

4.
C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II 2 (16) (1993), 31-42.

5.
B.-Y. Chen, Geometry of Submanifolds and its Applications, Science University of Tokyo, 1981.

6.
B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.

7.
B.-Y. Chen, Finite Type Submanifolds and Generalizations, Universita degli Studi di Roma "La Sapienza", Dipartimento di Matematica IV, Rome, 1985.

8.
B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337.

9.
B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. crossref(new window)

10.
B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186. crossref(new window)

11.
M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.

12.
G. Ganchev and V. Milousheva, Invariants and Bonnet-type theorem for surfaces in ${\mathbb{R}}^4$, Cent. Eur. J. Math. 8 (2010), no. 6, 993-1008. crossref(new window)

13.
Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000), no. 1, 85-96.

14.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205. crossref(new window)

15.
Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581. crossref(new window)

16.
D. A. Yoon, Rotation Surfaces with finite type Gauss map in ${\mathbb{E}}^4$, Indian J. Pura Appl. Math. 32 (2001), no. 12, 1803-1808.

17.
D. A. Yoon, Some properties of the clifford torus as rotation surfaces, Indian J. Pure Appl. Math. 34 (2003), no. 6, 907-915.