JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON MINIMAL NON-𝓠𝓝𝑺-GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON MINIMAL NON-𝓠𝓝𝑺-GROUPS
Han, Zhangjia; Shi, Huaguo; Chen, Guiyun;
  PDF(new window)
 Abstract
A finite group G is called a -group if every minimal subgroup X of G is either quasinormal in G or self-normalizing. In this paper the authors classify the non--groups whose proper subgroups are all -groups.
 Keywords
minimal subgroups;quasinormal subgroups;self-normalizing sub-groups;-groups;minimal non--groups;
 Language
English
 Cited by
 References
1.
W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), 125-132. crossref(new window)

2.
K. Doerk, Minimal nicht uberauflosbare endliche Gruppen, Math. Z. 91 (1966), 198-205. crossref(new window)

3.
D. Gorenstein, Finite Simple Groups, New York, Plenum Press, 1982.

4.
P. Guo and X. Zhang, On minimal non-MSP-groups, Ukrainian Math. J. 63 (2012), no. 9, 1458-1463. crossref(new window)

5.
Z. Han, G. Chen, and H. Shi, On minimal non-NSN-groups, J. Korean Math. Soc. 50 (2013), no. 3, 579-589. crossref(new window)

6.
T. Hawkes, On the automorphism group of a 2-group, Proc. London Math. Soc. 26 (1973), 207-225.

7.
B. Huppert, Endliche Gruppen I, New York, Berlin, Springer-Verlag, 1967.

8.
H. Kurzweil and B. Stellmacher, The Theory of Finite Groups: An Introduction, New York, Springer-Verlag, 2004.

9.
T. J. Laffey, A lemma on finite p-group and some consequences, Proc. Cambridge Philos. Soc. 75 (1974), 133-137. crossref(new window)

10.
G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), no. 4, 398-404. crossref(new window)

11.
D. J. S. Robinson, A Course in the Theory of Groups, New York, Springer, 1993.

12.
N. Sastry, On minimal non-PN-groups, J. Algebra 65 (1980), no. 1, 104-109. crossref(new window)

13.
J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. I, Bull. Amer. Math. Soc. 74 (1968), 383-437. crossref(new window)

14.
L. Wang, The Influence of Permutable Properties of Subgroups on the Structure of Finite Groups, Doctoral Dissertation of Zhongshan University, 2006.