JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC EQUIVALENCE BETWEEN TWO LINEAR DYNAMIC SYSTEMS ON TIME SCALES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC EQUIVALENCE BETWEEN TWO LINEAR DYNAMIC SYSTEMS ON TIME SCALES
Choi, Sung Kyu; Koo, Namjip;
  PDF(new window)
 Abstract
In this paper we investigate asymptotic properties about asymptotic equilibrium and asymptotic equivalence for linear dynamic systems on time scales by using the notion of -similarity. Also, we give some examples to illustrate our results.
 Keywords
asymptotic equivalence;asymptotic equilibrium;-similarity;strong stability;linear dynamic systems;time scales;
 Language
English
 Cited by
 References
1.
B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, in "Qualitative Theory of Differential Equations"(Szeged, 1988), 37-56, Colloq. Math. Soc. Janos Bolyai, 53, North Holland, Amsterdam, 1990.

2.
B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time scale, in "Nonlinear Dynamics and Quantum Dynamical Systems"(Gaussig, 1990), 9-20, Math. Res. 59, Akademie-Verlag, Berlin, 1990.

3.
M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.

4.
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.

5.
S. K. Choi, Y. H. Goo, and N. J. Koo, Variationally asymptotically stable difference systems, Adv. Difference Equ. 2007 (2007), Article ID 35378, 21 pp.

6.
S. K. Choi, Y. H. Goo, and N. Koo, h-Stability of dynamic equations on time scales with nonregressivity, Abstr. Appl. Anal. 2008 (2008), Article ID 632473, 13 pp.

7.
S. K. Choi and N. J. Koo, Variationally stable difference systems by $n_{\infty}$-similarity, J. Math. Anal. Appl. 249 (2000), no. 2, 553-568. crossref(new window)

8.
S. K. Choi and N. Koo, On the stability of linear dynamic systems on time scales, J. Difference Equ. Appl. 15 (2009), no. 2, 167-183. crossref(new window)

9.
S. K. Choi, N. J. Koo, and S. Dontha, Asymptotic property in variation for nonlinear differential systems, Appl. Math. Lett. 18 (2005), no. 1, 117-126. crossref(new window)

10.
S. K. Choi, N. J. Koo, and D. M. Im, Asymptotic equivalence between linear differential systems, Bull. Korean Math. Soc. 42 (2005), no. 4, 691-701. crossref(new window)

11.
S. K. Choi, N. J. Koo, and K. Lee, Asymptotic equivalence for linear differential systems, Commun. Korean Math. Soc. 26 (2011), no. 1, 37-49. crossref(new window)

12.
R. Conti, Sulla $t_{\infty}$-similitudine tra matrici e la stabilita dei sistemi differenziali lineari, Atti. Acc. Naz. Lincei, Rend. Cl. Fis. Mat. Nat. 49 (1955), 247-250.

13.
V. Cormani, Liouville's formula on time scales, Dynam. Systems Appl. 12 (2003), no. 1-2, 79-86.

14.
I. Gohberg, M. A. Kaashoek, and J. Kos, Classification of linear time-varying difference equations under kinematic similarity, Integral Equations Operator Theory 25 (1996), no. 4, 445-480. crossref(new window)

15.
S. Hilger, Analysis on measure chains - a unified approach to continous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56. crossref(new window)

16.
V. Lakshmikantham and S. Leela, Differential and Integral Inequalites with Theory and Applications, Academic Press, New York and London, 1969.

17.
L. Markus, Continuous matrices and the stability of differential systems, Math. Z. 62 (1955), 310-319. crossref(new window)

18.
W. F. Trench, On $t_{\infty}$ quasi-similarity of linear systems, Ann. Mat. Pura Appl. 142 (1985), 293-302. crossref(new window)

19.
W. F. Trench, Linear asymptotic equilibrium and uniform, exponential, and strict stability of linear difference systems, Comput. Math. Appl. 36 (1998), no. 10-12, 261-267. crossref(new window)