JOURNAL BROWSE
Search
Advanced SearchSearch Tips
POINTWISE SLANT SUBMERSIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
POINTWISE SLANT SUBMERSIONS
Lee, Jae Won; Sahin, Bayram;
  PDF(new window)
 Abstract
The purpose of this paper is to study pointwise slant submersions from almost Hermitian manifolds which extends slant submersion in a natural way. Several basic results in this point of view are proven in this paper.
 Keywords
Riemannian submersion;Hermitian manifold;Kaehler manifold;pointwise slant submersion;
 Language
English
 Cited by
1.
On anti-invariant Riemannian submersions whose total manifolds are locally product Riemannian, Journal of Geometry, 2017, 108, 2, 411  crossref(new windwow)
2.
Conformal semi-slant submersions, International Journal of Geometric Methods in Modern Physics, 2017, 14, 07, 1750114  crossref(new windwow)
3.
Hemi-slant Riemannian Maps, Mediterranean Journal of Mathematics, 2017, 14, 1  crossref(new windwow)
4.
Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 2017, 1  crossref(new windwow)
5.
Hemi-Slant Submersions, Mediterranean Journal of Mathematics, 2016, 13, 4, 2171  crossref(new windwow)
 References
1.
P. Baird and J. C. Wood, Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press, Oxford, 2003.

2.
J. P. Bourguinon and H. B. Lowson, Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. crossref(new window)

3.
J. P. Bourguinon and H. B. Lowson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino (1989), Special Issue, 143-163.

4.
J. L. Cabrerizo, A. Carriazo, and M. Fernandez, Slant submanifolds in Sasakian manifolds , Glasg. Math. J. 42 (2000), no. 1, 125-138. crossref(new window)

5.
B. Y. Chen, Slant Immersions, Bull. Austral. Math. Soc. 41 (1990), no. 1, 134-147.

6.
B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.

7.
B. Y. Chen and O. Garay, Pointwise slant submanifolds in almost Hermitian manifolds, Turk. J. Math. 36 (2012), no. 4, 630-640.

8.
C. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palermo 43 (1985), no. 1, 89-104.

9.
R. H. Escobales Jr., Riemannian submersions from complex projective space, J. Differential Geom. 13 (1978), no. 1, 93-107.

10.
F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Publ. Math. Debrecen 53 (1998), no. 1-2, 217-223.

11.
M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific, River Edge, NJ, 2004.

12.
A. Gray, Pseudo-Riemannian almost product manifolds and submersion, J. Math. Mech. 16 (1967), 715-737.

13.
S. Ianus, A. M. Ionescu, R. Mocanu, and G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hambg. 81 (2011), no. 1, 101-114. crossref(new window)

14.
S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. crossref(new window)

15.
S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. crossref(new window)

16.
S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersion, The mathematical heritage of C. F. Gauss, 358-371, World Sci. Publ., River Edge, NY, 1991.

17.
J. C. Marrero and J. Rocha, Locally conformal Kahler submersions, Geom. Dedicata 53 (1994), no. 3, 271-289. crossref(new window)

18.
M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. crossref(new window)

19.
B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (1966), 458-469.

20.
B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437-447. crossref(new window)

21.
B. Sahin, Slant submersions from almost hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie 54(102) (2011), no. 1 93-105.

22.
B. Sahin, Riemannian submersions from almost Hermitian manifolds, Taiwaneese J. Math. 17 (2013), no. 2, 629-659.

23.
B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147-165.

24.
B. Watson, G, G'-Riemannian submersioins and nonlinear gauge field equations of general relativity, Global analysis-analysis on manifolds, 324-349, Teubner-Texte Math., 57 Teubner, Leipzig, 1983.