JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS
Zhang, Wei; Xu, Xiaowei;
  PDF(new window)
 Abstract
Let S be a nonempty subset of a ring R. A map is called strong commutativity preserving on S if [f(x), f(y)]
 Keywords
semiprime ring;prime ring;strong commutativity preserving map;
 Language
English
 Cited by
 References
1.
S. Ali and S. Huang, On derivations in semiprime rings, Algebr. Represent. Theory 15 (2012), no. 6, 1023-1033. crossref(new window)

2.
K. T. Beidar, W. S. Martindale, and A. V. Mikhalev, Rings with Generalized Identities, Pure and Applied Mathematics 196, Marcel Dekker, New York, 1996.

3.
H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447. crossref(new window)

4.
H. E. Bell and G. Mason, On derivations in near rings and rings, Math. J. Okayama Univ. 34 (1992), 135-144.

5.
M. Bresar, and C. R. Miers, Strong commutativity preserving maps of semiprime rings, Canad. Math. Bull. 37 (1994), no. 4, 457-460. crossref(new window)

6.
V. De Filippis and G. Scudo, Strong commutativity and Engel condition preserving maps in prime and semiprime rings, Linear Multilinear Algebra 61 (2013), 917-938. crossref(new window)

7.
Q. Deng and M. Ashraf, On strong commutativity preserving mappings, Results Math. 30 (1996), no. 3-4, 259-263. crossref(new window)

8.
T. K. Lee and T. L. Wong, Nonadditive strong commutativity preserving maps, Comm. Algebra 40 (2012), no. 6, 2213-2218. crossref(new window)

9.
P. K. Liau, W. L. Huang, and C. K. Liu, Nonlinear strong commutativity preserving maps on skew elements of prime rings with involution, Linear Algebra Appl. 436 (2012), no. 9, 3099-3108. crossref(new window)

10.
J. S. Lin and C. K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl. 428 (2008), no. 7, 1601-1609. crossref(new window)

11.
C. K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math. 166 (2012), no. 3-4, 453-465. crossref(new window)

12.
C. K. Liu and P. K. Liau, Strong commutativity preserving generalized derivations on Lie ideals, Linear Multilinear Algebra, 59 (2011), no. 8, 905-915. crossref(new window)

13.
J. Ma, X. W. Xu, and F. W. Niu, Strong commutativity-preserving generalized derivations on semiprime rings, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 11, 1835-1842. crossref(new window)

14.
X. F. Qi and J. C. Hou, Nonlinear strong commutativity preserving maps on prime rings, Comm. Algebra 38 (2010), no. 8, 2790-2796. crossref(new window)