JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON 2-ABSORBING PRIMARY IDEALS IN COMMUTATIVE RINGS
Badawi, Ayman; Tekir, Unsal; Yetkin, Ece;
  PDF(new window)
 Abstract
Let R be a commutative ring with . In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever and , then or or . A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.
 Keywords
primary ideal;prime ideal;2-absorbing ideal;n-absorbing ideal;
 Language
English
 Cited by
1.
Weakly Classical Prime Submodules,;;;

Kyungpook mathematical journal, 2016. vol.56. 4, pp.1085-1101 crossref(new window)
2.
ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING,;;

대한수학회지, 2016. vol.53. 6, pp.1225-1236 crossref(new window)
3.
ON WEAKLY 2-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS,;;;

대한수학회지, 2015. vol.52. 1, pp.97-111 crossref(new window)
4.
ON 𝜙-n-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS,;;

대한수학회지, 2016. vol.53. 3, pp.549-582 crossref(new window)
5.
On 2-Absorbing and Weakly 2-Absorbing Primary Ideals of a Commutative Semiring,;

Kyungpook mathematical journal, 2016. vol.56. 1, pp.107-120 crossref(new window)
1.
On (m, n)-absorbing ideals of commutative rings, Proceedings - Mathematical Sciences, 2017, 127, 2, 251  crossref(new windwow)
2.
On 2-Absorbing Quasi-Primary Ideals in Commutative Rings, Communications in Mathematics and Statistics, 2016, 4, 1, 55  crossref(new windwow)
3.
Weakly Classical Prime Submodules, Kyungpook mathematical journal, 2016, 56, 4, 1085  crossref(new windwow)
4.
On 2-Absorbing Primary Submodules of Modules over Commutative Rings, Analele Universitatii "Ovidius" Constanta - Seria Matematica, 2016, 24, 1  crossref(new windwow)
5.
On 2-absorbing primary submodules of modules over commutative ring with unity, Asian-European Journal of Mathematics, 2015, 08, 04, 1550064  crossref(new windwow)
6.
On ϕ-2-Absorbing Primary Submodules, Acta Mathematica Vietnamica, 2017, 42, 1, 27  crossref(new windwow)
7.
ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING, Journal of the Korean Mathematical Society, 2016, 53, 6, 1225  crossref(new windwow)
8.
Onϕ-Absorbing Primary Elements in Lattice Modules, Algebra, 2015, 2015, 1  crossref(new windwow)
9.
ON 𝜙-n-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS, Journal of the Korean Mathematical Society, 2016, 53, 3, 549  crossref(new windwow)
10.
On 2-Absorbing Primary Fuzzy Ideals of Commutative Rings, Mathematical Problems in Engineering, 2017, 2017, 1  crossref(new windwow)
11.
On 2-Absorbing and Weakly 2-Absorbing Primary Ideals of a Commutative Semiring, Kyungpook mathematical journal, 2016, 56, 1, 107  crossref(new windwow)
12.
On (m,n)-closed ideals of commutative rings, Journal of Algebra and Its Applications, 2017, 16, 01, 1750013  crossref(new windwow)
 References
1.
D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696. crossref(new window)

2.
D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672. crossref(new window)

3.
A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. crossref(new window)

4.
A. Y. Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013), no. 1, 83-91. crossref(new window)

5.
M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268-1279. crossref(new window)

6.
R. Gilmer, Multiplicative Ideal Theory, Queen Papers Pure Appl. Math. 90, Queen's University, Kingston, 1992.

7.
J. Huckaba, Rings with Zero-Divisors, New York/Basil, Marcel Dekker, 1988.

8.
S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (2012), no. 5-8, 265-271.