JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SELF-DUAL CODES AND FIXED-POINT-FREE PERMUTATIONS OF ORDER 2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SELF-DUAL CODES AND FIXED-POINT-FREE PERMUTATIONS OF ORDER 2
Kim, Hyun Jin;
  PDF(new window)
 Abstract
We construct new binary optimal self-dual codes of length 50. We develop a construction method for binary self-dual codes with a fixed-point-free automorphism of order 2. Using this method, we find new binary optimal self-dual codes of length 52. From these codes, we obtain Lee-optimal self-dual codes over the ring of lengths 25 and 26.
 Keywords
automorphism;extremal code;optimal code;self-dual code;
 Language
English
 Cited by
 References
1.
E. Bannai, M. Harada, A. Munemasa, T. Ibukiyamasa, and M. Oura, Type II codes over $F_2+_uF_2$ and applications to Hermitian modular forms, Abh. Math. Sem. Univ. Hamburg 73 (2003), 13-42. crossref(new window)

2.
A. Bonnecaze, P. Sole, and A. R. Calderbank, Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory 41 (1995), no. 2, 366-377. crossref(new window)

3.
S. Buyuklieva, New binary extremal self-dual codes with lengths 50 and 52, Serdica Math. J. 12 (1999), no. 3, 185-190.

4.
S. Buyuklieva, A method for constucting self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory 46 (2000), no. 2, 496-504. crossref(new window)

5.
S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order 2, IEEE Trans. Inform. Theory 44 (1998), no. 1, 323-328. crossref(new window)

6.
S. Buyuklieva, M. Harada, and A. Munemasa, Restrictions on the weight enumerators of binary self-dual codes of length 4m, Proceedings of the International Workshop OCRT, White Lagoon, Bulgaria, 2007.

7.
J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990), no. 6, 1319-1333. crossref(new window)

8.
S. T. Dougherty, P. Gaborit, M. Harada, A. Munemasa, and P. Sole, Type IV self-dual codes over rings, IEEE Trans. Inform. Theory 45 (1999), no. 7, 2345-2360. crossref(new window)

9.
S. T. Dougherty, P. Gaborit, M. Harada, and P. Sole, Type II codes over $F_2+_uF_2$, IEEE Trans. Inform. Theory 45 (1999), no. 1, 32-45. crossref(new window)

10.
S. T. Dougherty, T. A. Gulliver, and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory 43 (1997), no. 6, 2036-2047. crossref(new window)

11.
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. Sloane, and P. Sole, A linear construction for certain Kerdock and Preparata codes, Bull. Amer. Math. Soc. 29 (1993), no. 2, 218-222. crossref(new window)

12.
M. Harada, Existence of new extremal doubly-even codes and extremal singly-even codes, Des. Codes Cryptogr. 8 (1996), no. 3, 273-283. crossref(new window)

13.
M. Harada, The existence of a self-dual [70, 35, 12] code and formally self-dual codes, Finite Fields Appl. 3 (1997), no. 2, 131-139. crossref(new window)

14.
M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory 52 (2006), no. 3, 1266-1269. crossref(new window)

15.
M. Harada, A. Munemasa, and V. Tonchev, A characterization of designs related to an extremal doubly-even self-dual code of length 48, Ann. Combin. 9 (2005), no. 2, 189-198. crossref(new window)

16.
S. K. Houghten, C. W. H. Lam, L. H. Thiel, and J. A. Parker, The extended quadratic residue code is the only (48, 24, 12) self-dual doubly-even code, IEEE Trans. Inform. Theory 49 (2003), no. 1, 53-59. crossref(new window)

17.
W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), no. 3, 451-490. crossref(new window)

18.
W. C. Huffman, On the decomposition of self-dual codes over M. Harada with an automorphism of odd prime order, Finite Fields Appl. 13 (2007), no. 3, 681-712. crossref(new window)

19.
W. C. Huffman, Self-dual codes over M. Harada with an automorphism of odd order, Finite Fields Appl. 15 (2009), no. 3, 277-293. crossref(new window)

20.
W. C. Huffman and V. Tonchev, The existence of extremal self-dual [50, 25, 10] codes and quasisymmetric 2 − (49, 9, 6), Des. Codes Cryptogr. 6 (1995), no. 2, 97-106. crossref(new window)

21.
W. C. Huffman and V. Tonchev, The [52, 26, 10] binary self-dual codes with an automorphism of order 7, in Proc. Optimal Codes and Related Topics, 127-136, Sozopol, Bulgaria, 1998.

22.
H. J. Kim, Lee-extremal self-dual codes over $F_2+_uF_2$ of lengths 23 and 24, Finite Fields Appl. 29 (2014), 18-33. crossref(new window)

23.
H. J. Kim, H. Lee, J. B. Lee, and Y. Lee, Construction of self-dual codes with an automorphism of order p, Adv. Math. Commun. 5 (2011), no. 1, 23-36. crossref(new window)

24.
H. J. Kim and Y. Lee, Construction of extremal self-dual codes over $F_2+_uF_2$ with an automorphism of odd order, Finite Fields Appl. 18 (2012), no. 5, 971-992. crossref(new window)

25.
H. J. Kim and Y. Lee, Hermitian self-dual codes over $\mathbb{F}_{2^{2m}}+u\mathbb{F}_{2^{2m}}$, Finite Fields Appl. 25 (2014), 106-131. crossref(new window)

26.
J.-L. Kim, New extremal self-daul codes of length 36, 38, and 58, IEEE Trans. Inform. Theory 47 (2001), no. 1, 386-393. crossref(new window)

27.
C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188-200. crossref(new window)

28.
E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44 (1998), no. 1, 134-139. crossref(new window)

29.
H.-P. Tsai, Existence of some extremal self-dual codes, IEEE Trans. Inform. Theory 38 (1992), no. 6, 1829-1833. crossref(new window)

30.
N. Yankov, New optimal [52, 26, 10] self-dual codes, Des. Codes Cryptogr. 69 (2013), no. 2, 151-159. crossref(new window)

31.
N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automor-phism of order 7 or 13, IEEE Trans. Inform. Theory 56 (2011), no. 11, 7498-7506.

32.
S. Zhang and S. Li, Some new extremal self-dual codes with lengths 42, 44, 52, and 58, Discrete Math. 238 (2001), no. 1-3, 147-150. crossref(new window)