JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEIGHTED COMPOSITION OPERATORS ON THE MINIMAL MÖBIUS INVARIANT SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEIGHTED COMPOSITION OPERATORS ON THE MINIMAL MÖBIUS INVARIANT SPACE
Ohno, Shuichi;
  PDF(new window)
 Abstract
We will characterize the boundedness and compactness of weighted composition operators on the minimal Mbius invariant space.
 Keywords
weighted composition operator;Besov spaces;the minimal Mobius invariant space;
 Language
English
 Cited by
 References
1.
J. Arazy, S. D. Fisher, and J. Peetre, Mobious invariant function spaces, J. Reine Angew. Math. 363 (1985), 110-145.

2.
G. Bao and H. Wulan, The minimal Mobious invariant spaces, Complex Var. Elliptic Equ. 59 (2014), no. 2, 190-203. crossref(new window)

3.
O. Blasco, Composition operators on the minimal space invariant under Mobious transformations, Complex and harmonic analysis, 157-166, DEStech Publ. Inc., Lancaster, PA, 2007.

4.
F. Colonna and S. Li, Weighted composition operators from the minimal Mobious invariant space into the Bloch space, Mediterr. J. Math. 10 (2013), no. 1, 395-409. crossref(new window)

5.
F. Colonna and S. Li, Weighted composition operators from the Besov spaces into the Bloch spaces, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 4, 1027-1039.

6.
C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.

7.
J. H. Shapiro, Compact composition operators on spaces of boundary-regular holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 1, 49-57. crossref(new window)

8.
J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.

9.
M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4683-4698. crossref(new window)

10.
H. Wulan and C. Xiong, Composition operators on the minimal Mobious invariamt space, Hilbert spaces of analytic functions, 203-209, CRM Proc. Lecture Notes, 51, Amer. Math. Soc., Providence, RI, 2010.

11.
R. Zhao, Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl. 233 (1999), no. 2, 749-766. crossref(new window)

12.
K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990; Second Edition, Amer. Math. Soc., Providence, 2007.

13.
K. Zhu, Analytic Besov spaces, J. Math. Anal. Appl. 157 (1991), no. 2, 318-336. crossref(new window)