JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON TERNARY CYCLOTOMIC POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON TERNARY CYCLOTOMIC POLYNOMIALS
Zhang, Bin;
  PDF(new window)
 Abstract
Let ${\Phi}_n(x)
 Keywords
cyclotomic polynomial;coefficients of cyclotomic polynomial;ternary cyclotomic polynomial;
 Language
English
 Cited by
1.
ON A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS,;;

대한수학회보, 2015. vol.52. 6, pp.1911-1924 crossref(new window)
1.
ON A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS, Bulletin of the Korean Mathematical Society, 2015, 52, 6, 1911  crossref(new windwow)
 References
1.
G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), no. 1, 53-60. crossref(new window)

2.
G. Bachman and P. Moree, On a class of ternary inclusion-exclusion polynomials, Integers 11 (2011), A8, 14 pp.

3.
B. Bzdega, On the height of cyclotomic polynomials, Acta Arith. 152 (2012), no. 4, 349-359. crossref(new window)

4.
L. Carlitz, The number of terms in the cyclotomic polynomial $F{pq}(X)$, Amer. Math. Monthly 73 (1966), 979-981. crossref(new window)

5.
S. Elder, Flat Cyclotomic Polynomials: A New Approach, arXiv:1207.5811v1, 2012.

6.
H. Hong, E. Lee, H. S. Lee, and C. M. Park, Maximum gap in (inverse) cyclotomic polynomial, J. Number Theory 132 (2012), no. 10, 2297-2315. crossref(new window)

7.
N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), no. 1, 118-126. crossref(new window)

8.
T. Y. Lam and K. H. Leung, On the cyclotomic polynomial ${\Phi}{pq}(X)$, Amer. Math. Monthly 103 (1996), no. 7, 562-564. crossref(new window)

9.
E. Lehmer, On the magnitude of the coefficients of the cyclotomic polynomials, Bull. Amer. Math. Soc. 42 (1936), no. 6, 389-392. crossref(new window)

10.
H. W. Lenstra, Vanishing sums of roots of unity, in: Proceedings, Bicentennial Congress Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, pp. 249-268, Math. Centre Tracts, 101, Math. Centrum, Amsterdam, 1979.

11.
H. Moller, Uber die Koeffizienten des n-ten Kreisteilungspolynoms, Math. Z. 119 (1971), 33-40. crossref(new window)

12.
P. Moree, Inverse cyclotomic polynomials, J. Number Theory 129 (2009), no. 3, 667-680. crossref(new window)

13.
R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics (Pune, 1999), 311-322, Bhaskaracharya Pratishthana, Pune, 2000.

14.
J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), no. 10, 2223-2237. crossref(new window)