JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRUCTURAL STABILITY RESULTS FOR THE THERMOELASTICITY OF TYPE III
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRUCTURAL STABILITY RESULTS FOR THE THERMOELASTICITY OF TYPE III
Liu, Yan;
  PDF(new window)
 Abstract
The equations arising from the thermoelastic theory are analyzed in a linear approximation. First, we establish the convergence result on the coefficient c. Next, we establish that the solution depends continuously on changes in the coefficient c. The main tool used in this paper is the energy method.
 Keywords
convergence result;continuous dependence;thermoelasticity of type III;structural stability;
 Language
English
 Cited by
1.
Waves and uniqueness in multi-porosity elasticity, Journal of Thermal Stresses, 2016, 39, 6, 704  crossref(new windwow)
2.
Modelling questions in multi-porosity elasticity, Meccanica, 2016, 51, 12, 2957  crossref(new windwow)
 References
1.
K. A. Ames and B. Straughan, Non-Standard and Improperly Posed Problems, Mathe-matics in Science and Engineering Series, Vol. 194, Academic, Press, San Diego, 1997.

2.
A. O. Celebi, V. K. Kalantarov, and D. Ugurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Appl. Math. Lett. 19 (2006), no. 8, 801-807. crossref(new window)

3.
A. O. Celebi, V. K. Kalantarov, and D. Ugurlu, Continuous dependence for the convective Brinkman-Forchheimer equations, Appl. Anal. 84 (2005), no. 9, 877-888. crossref(new window)

4.
S. Chirita and R. Quintanilla, Spatial decay estimates of Saint-Venant's type in generalized thermoelasticity, Internat. J. Engng. Sci. 34 (1996), no. 3, 299-311. crossref(new window)

5.
F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), no. 2040, 3195-3202. crossref(new window)

6.
A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics , Proc. Roy. Soc. London Ser. A 432 (1991), no. 1885, 171-194. crossref(new window)

7.
A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity 31 (1993), no. 3, 189-208. crossref(new window)

8.
C. O. Horgan and L. E. Payne, On inequalities of Korn, Friedrichs and Bobuska-Aziz, Arch. Rational Mech. Anal. 82 (1983), no. 2, 165-179.

9.
Y. Liu and C. Lin, Phragmen-Lindelof alternative and continuous dependence-type results for the thermoelasticity of type III, Appl. Anal. 87 (2008), no. 4, 431-449. crossref(new window)

10.
C. Lin and L. E. Payne, Structural stability for a Brinkman fluid, Math. Methods Appl. Sci. 30 (2007), no. 5, 567-578. crossref(new window)

11.
L. E. Payne and J. C. Song, Phragmen-Lindelof and continuous dependence type results in generalized heat conduction, Z. Angew. Math. Phys. 47 (1996), no. 4, 527-538. crossref(new window)

12.
L. E. Payne, J. C. Song, and B. Straughan, Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1986, 2173-2190. crossref(new window)

13.
L. E. Payne and B. Straughan, Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media, J. Math. Pures Appl. 75 (1996), no. 3, 255-271.

14.
L. E. Payne and B. Straughan, Convergence of the equations for a Maxwell fluid, Stud. Appl.Math. 103 (1999), no. 3, 267-278. crossref(new window)

15.
L. E. Payne and B. Straughan, Structural stability for the Darcy equations of flow in porous media, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998), no. 1974, 1691-1698. crossref(new window)

16.
R. Quintanilla, Logarithmic convexity in thermoelasticity of type III, Mathematical and Numerical Aspects of Wave Propagation, pp. 192-196, SIAM, Philadelphia, PA, 2000.

17.
R. Quintanilla, Damping of end effects in a thermoelastic theory, Appl. Math. Lett. 14 (2001), no. 2, 137-141. crossref(new window)

18.
R. Quintanilla, Convergence and structural stability in thermoelasticity, Appl. Math. Comput. 135 (2003), no. 2-3, 287-300. crossref(new window)

19.
R. Quintanilla, On the spatial behavior of constrained motion in type III thermoelasticity, J. Thermal Stresses 33 (2010), no. 7, 694-705. crossref(new window)

20.
J. C. Song, Phragmen-Lindelof and continuous dependence type results in a stokes flow, Appl. Math. Mech. (English Ed.) 31 (2010), no. 7, 875-882. crossref(new window)

21.
B. Straughan, The Energy Method, Stability and Nonlinear Convection, Second Edition, Springer, Appl. Math. Sci. Ser., vol. 91, 2004.

22.
B. Straughan, Stability and Wave Motion in Porous Media, Springer, Appl. Math. Sci. Ser., vol. 165, 2008.

23.
B. Straughan, Explosive Instabilities in Mechanics, Springer, Berlin-heidelberg, 1998.