JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE LAST DIGIT AND THE LAST NON-ZERO DIGIT OF nn IN BASE b
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE LAST DIGIT AND THE LAST NON-ZERO DIGIT OF nn IN BASE b
Grau, Jose Maria; Oller-Marcen, Antonio M.;
  PDF(new window)
 Abstract
In this paper we study the sequences defined by the last and the last non-zero digits of in base b. For the sequence given by the last digits of in base b, we prove its periodicity using different techniques than those used by W. Sierpinski and R. Hampel. In the case of the sequence given by the last non-zero digits of in base b (which had been studied only for b
 Keywords
last digit;last non-zero digit;;
 Language
English
 Cited by
 References
1.
R. Crocker, On a new problem in number theory, Amer. Math. Monthly 73 (1966), 355-357. crossref(new window)

2.
R. Crocker, On residues of $n^n$, Amer. Math. Monthly 76 (1969), 1028-1029. crossref(new window)

3.
G. Dresden, Two irrational numbers from the last nonzero digits of $n^n$ and n!, Math. Mag. 74 (2001), 316-320. crossref(new window)

4.
G. Dresden, Three transcendental numbers from the last non-zero digits of $n^n$, $F_n$, and n!, Math. Mag. 81 (2008), no. 2, 96-105.

5.
R. Euler and J. Sadek, A number that gives the unit digit of $n^n$, J. Rec. Math. 29 (1998), no. 3, 203-204.

6.
J. D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arith. 16 (1969), 105-110.

7.
R. Hampel, The length of the shortest period of rests of number $n^n$, A$n^n$. Polon. Math. 1 (1955), 360-366.

8.
J. L. Lagrange, Oeuvres de Lagrange, Gautiers Villars, Paris 7, 1877.

9.
D. W. Robinson, The Fibonacci matrix modulo m, Fibonacci Quart. 1 (1963), no. 2, 29-36.

10.
D. B. Shapiro and S. D. Shapiro, Iterated exponents in number theory, Integers 7 (2007), A23, 19 pp.

11.
W. Shur, The last digit of $(^{2n}_n)$ and ${\sum}(^n_i)(^{2n-2i}_{n-i})$, Electron J. Combin. 4 (1997), no. 2, Research Paper 16, approx. 8 pp.

12.
W. Sierpinski, Sur la periodicite mod m de certaines suites infinies d'entiers, A$n^n$. Soc. Polon. Math. 23 (1950), 252-258.

13.
L. Somer, The residues of $n^n$ modulo p, Fibonacci Quart. 19 (1981), no. 2, 110-117.

14.
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525-532. crossref(new window)