JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A BOUNDED KOHN NIRENBERG DOMAIN
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A BOUNDED KOHN NIRENBERG DOMAIN
Calamai, Simone;
  PDF(new window)
 Abstract
Building on the famous domain of Kohn and Nirenberg we give an example of a domain which shares the important features of the Kohn Nirenberg domain, but which can also be shown to be -bounded As an application, we remark that this example has compact automorphism group.
 Keywords
Kohn Nirenberg domain;holomorphic boundedness;
 Language
English
 Cited by
1.
NEW AND OLD RESULTS OF COMPUTATIONS OF AUTOMORPHISM GROUP OF DOMAINS IN THE COMPLEX SPACE,;

East Asian mathematical journal, 2015. vol.31. 3, pp.363-370 crossref(new window)
 References
1.
E. Bedford and S. Pinchuk, Domains in $\mathbb{C}^2$ with noncompact automorphism group, Indiana Univ. Math. J. 47 (1998), no. 1, 199-222.

2.
J. Byun, On the automorphism group of the Kohn-Nirenberg domain, J. Math. Anal. Appl. 266 (2002), no. 2, 342-356. crossref(new window)

3.
J. Byun, On the boundary accumulation points for the holomorphic automorphism groups, Michigan Math. J. 51 (2003), no. 2, 379-386. crossref(new window)

4.
J. Byun and H. R. Cho, Explicit description for the automorphism group of the Kohn-Nirenberg domain, Math. Z. 263 (2009), no. 2, 295-305. crossref(new window)

5.
J. E. Fornaess and B. Stensones, Lectures on Counterexamples in Several Complex Variables, Princeton University Press, 1987.

6.
J. J. Kohn and L. A. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201 (1973), 265-268. crossref(new window)

7.
M. Kolar, Convexifiability and supporting function in $\mathbb{C}^2$, Math. Res. Lett. 2 (1995), no. 4, 505-513. crossref(new window)

8.
M. Kolar, Generalized models and local invariants of Kohn-Nirenberg domains, Math. Z. 259 (2008), no. 2, 277-286. crossref(new window)

9.
R. Narasimhan, Several Complex Variables, University of Chicago press, Chicago 1971.

10.
G. D. Sala, A. Saracco, A. Simioniuc, and G. Tomassini, Lectures on Complex Analysis and Analytic Geometry, Edizioni della Normale, 2006.