JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DUALITY OF QK-TYPE SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DUALITY OF QK-TYPE SPACES
Zhan, Mujun; Cao, Guangfu;
  PDF(new window)
 Abstract
For BMO, it is well known that $VMO^{**}
 Keywords
-type spaces;R(p, q, K) spaces;duality;
 Language
English
 Cited by
 References
1.
M. Essen and H. Wulan, On analytic and meromorphic functions and spaces of $Q_K$ type, Illinois J. Math. 46 (2002), no. 4, 1233-1258.

2.
M. Essen, H. Wulan, and J. Xiao, Several function-theoretic characterizations of Mobius invariant $Q_K$ spaces, J. Funct. Anal. 230 (2006), no. 1, 78-115. crossref(new window)

3.
M. Lindstrom and N. Palmberg, Duality of a large family of analytic function spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 1, 251-267.

4.
K. Ng, On a theorem of Dixmer, Math. Scand. 29 (1971), 279-280.

5.
M. Pavlovic and J. Xiao, Splitting planar isoperimetric inequality through preduality of $Q_p$, 0 < p < 1, J. Funct. Anal. 233 (2006), no. 1, 40-59. crossref(new window)

6.
S. Stevic, On an integral operator on the unit ball in $C^n$, J. Inequal. Appl. 1 (2005), no. 1, 81-88.

7.
H. Wulan and J. Zhou, $Q_K$ type spaces of analytic functions, J. Funct. Spaces Appl. 4 (2006), no. 1, 73-84. crossref(new window)

8.
H. Wulan and J. Zhou, The higher order derivatives of $Q_K$ type spaces, J. Math. Anal. Appl. 332 (2007), no. 2, 1216-1228. crossref(new window)

9.
J. Zhou, $Q_K$ Type Spaces of Analytic Functions, Thesis for Master of Science, ShanTou University, ShanTou, 2005.

10.
K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.