JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON RECURRENCE FORMULA FOR VALUES OF THE EULER ZETA FUNCTIONS ζE(2n) AT POSITIVE INTEGERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON RECURRENCE FORMULA FOR VALUES OF THE EULER ZETA FUNCTIONS ζE(2n) AT POSITIVE INTEGERS
Lee, Hui Young; Ryoo, Cheon Seoung;
  PDF(new window)
 Abstract
The Euler zeta function is defined by . The purpose of this paper is to find formulas of the Euler zeta function's values. In this paper, for we find the recurrence formula of using the Fourier series. Also we find the recurrence formula of , where .
 Keywords
zeta function;Euler zeta function;Fourier series;
 Language
English
 Cited by
1.
ON THE RECURRENCE FORMULA OF THE EULER ZETA FUNCTIONS, Journal of the Chungcheong Mathematical Society, 2016, 29, 2, 283  crossref(new windwow)
 References
1.
R. Ayoub, Euler and zeta function, Amer. Math. Monthly 81 (1974), 1067-1086. crossref(new window)

2.
T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on $\mathbb{Z}_p$ at q = −1, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792. crossref(new window)

3.
T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Appl. Anal. 2008 (2008), Article ID 581582, 11 pages.

4.
T. Kim, J. Choi, and Y. H. Kim, A note on values of Euler zeta functions at positive integers, Adv. Stud. Contemp. Math. 22 (2012), no. 1, 27-34.

5.
D. S. Kim and T. Kim, Euler basis, identities, and their applications, Int. J. Math. Math. Sci. 2012 (2012), Article ID 343981, 15 pages.

6.
D. S. Kim, T. Kim, W. J. Kim, and D. V. Dolgy, A note on Eulerian polynomials, Abstr. Appl. Anal. 2012 (2012), Article ID 269640, 10 pages.

7.
H. Ozden, Y. Simsek, S.-H. Rim, and I. N. Cangul, A note on p-adic q-Euler measure, Adv. Stud. Contemp. Math. 14 (2007), no. 2, 233-239.

8.
S. H. Rim and T. Kim, A note on q-Euler numbers associated with the basic q-zeta function, Appl. Math. Lett. 20 (2007), no. 4, 366-369. crossref(new window)

9.
D. G. Zill and W. S. Wright, Advanced Engineering Mathematics. 4th, Textbooks, 2009.