MULTIPLE PERIODIC SOLUTIONS OF SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS ACROSS RESONANCE

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 51, Issue 5, 2014, pp.1433-1451
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2014.51.5.1433

Title & Authors

MULTIPLE PERIODIC SOLUTIONS OF SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS ACROSS RESONANCE

Cai, Hua; Chang, Xiaojun; Zhao, Xin;

Cai, Hua; Chang, Xiaojun; Zhao, Xin;

Abstract

In this paper we study the existence of multiple periodic solutions of second-order ordinary differential equations. New results of multiplicity of periodic solutions are obtained when the nonlinearity may cross multiple consecutive eigenvalues. The arguments are proceeded by a combination of variational and degree theoretic methods.

Keywords

periodic solutions;ordinary differential equations;resonance;variational method;Leray-Schauder degree;

Language

English

References

1.

H. Amann, A note on degree theory for gradient mappings, Proc. Amer. Math. Soc. 85 (1982), no. 4, 591-595.

2.

G. Barletta and N. S. Papageorgiou, Periodic problems with double resonance, NoDEA Nonlinear Differential Equations Appl. 19 (2012), no. 3, 303-328.

3.

A. Castro and J. Cossio, Multiple solutions for a nonlinear Dirichlet problem, SIAM J. Math. Anal. 25 (1994), no. 6, 1554-1561.

4.

X. J. Chang and Q. D. Huang, Two-point boundary value problems for Duffing equations across resonance, J. Optim. Theory Appl. 140 (2009), no. 3, 419-430.

5.

X. J. Chang and Y. Li, Existence and multiplicity of nontrivial solutions for semilinear elliptic Dirichlet problems across resonance, Topol. Methods Nonlinear Anal. 36 (2010), no. 2, 285-310.

6.

X. J. Chang, Y. Li, and S. G. Ji, Nonresonance conditions on the potential with respect to the Fucik spectrum for semilinear Dirichlet problems, Z. Angew. Math. Phys. 61 (2010), no. 5, 823-833.

7.

X. J. Chang and Y. Qiao, Existence of periodic solutions for a class of p-Laplacian equations, Bound. Value Probl. 2013 (2013), 11 pp.

8.

D. G. Costa and A. S. Oliveira, Existence of solution for a class of semilinear elliptic problems at double resonance, Bol. Soc. Brasil. Mat. 19 (1988), no. 1, 21-37.

9.

D. Del Santo and P. Omari, Nonresonance conditions on the potential for a semilinear elliptic problem, J. Differential Equations 108 (1994), no. 1, 120-138.

10.

T. Ding, R. Iannacci, and F. Zanolin, Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations 105 (1993), no. 2, 364-409.

11.

C. L. Dolph, Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. Soc. 66 (1949), 289-307.

12.

P. Drabek, Landesman-Lazer conditions for nonlinear problems with jumping nonlin-earities, J. Differential Equations 85 (1990), no. 1, 186-199.

13.

P. Habets and G. Metzen, Existence of periodic solutions of Duffing equations, J. Differential Equations 78 (1989), no. 1, 1-32.

14.

P. Habets, P. Omari, and F. Zanolin, Nonresonance conditions on the potential with respect to the Fuik spectrum for the periodic boundary value problem, Rocky Mountain J. Math. 25 (1995), no. 4, 1305-1340.

15.

C. Fabry and A. Fonda, Periodic solutions of nonlinear differential equations with double resonance, Ann. Mat. Pura Appl. (4) 157 (1990), 99-116.

16.

A. Fonda, On the existence of periodic solutions for scalar second order differential equations when only the asymptotic behaviour of the potential is known, Proc. Amer. Math. Soc. 119 (1993), no. 2, 439-445.

17.

A. Fonda and P. Habets, Periodic solutions of asymptotically positively homogeneous differential equations, J. Differential Equations 81 (1989), no. 1, 68-97.

18.

D. Y. Hao and S. W. Ma, Semilinear Duffing equations crossing resonance points, J. Differential Equations 133 (1997), no. 1, 98-116.

19.

H. Hofer, The topological degree at a critical point of mountain pass type, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983), 501-509, Proc. Sympos. Pure Math., 45, Part 1, Amer. Math. Soc., Providence, RI, 1986.

20.

R. Iannacci and M. N. Nkashama, Unbounded perturbations of forced second order or-dinary differential equations at resonance, J. Differential Equations 69 (1987), no. 3, 289-301.

21.

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1969/1970), 609-623.

22.

A. C. Lazer and S. Solimini, Nontrivial solutions of operator equations and morse indices of critical points of min-max type, Nonlinear Anal. 12 (1988), no. 8, 761-775.

23.

W. B. Liu and Y. Li, Existence of 2-periodic solutions for the non-dissipative Duffing equation under asymptotic behaviors of potential function, Z. Angew. Math. Phys. 57 (2006), no. 1, 1-11.

24.

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Spring-Verlag, Berlin, 1989.

25.

L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathemat-ical Sciences, New York University, New York, 1974.

26.

P. Omari and F. Zanolin, Nonresonance conditions on the potential for a second-order periodic boundary value problem, Proc. Amer. Math. Soc. 117 (1993), no. 1, 125-135.

27.

N. S. Papageorgiou and V. Staicu, Multiple nontrivial solutions for doubly resonant periodic problems, Canad. Math. Bull. 53 (2010), no. 2, 347-359.

28.

J. Su and L. Zhao, Multiple periodic solutions of ordinary differential equations with double resonance, Nonlinear Anal. 70 (2009), no. 4, 1520-1527.