JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON GENERALIZED DIRAC EIGENVALUES FOR SPLIT HOLONOMY AND TORSION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON GENERALIZED DIRAC EIGENVALUES FOR SPLIT HOLONOMY AND TORSION
Agricola, Ilka; Kim, Hwajeong;
  PDF(new window)
 Abstract
We study the Dirac spectrum on compact Riemannian spin manifolds M equipped with a metric connection with skew torsion in the situation where the tangent bundle splits under the holonomy of and the torsion of is of `split` type. We prove an optimal lower bound for the first eigenvalue of the Dirac operator with torsion that generalizes Friedrich`s classical Riemannian estimate.
 Keywords
Dirac operator;eigenvalue estimate;metric connection with torsion;
 Language
English
 Cited by
 References
1.
I. Agricola, Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory, Comm. Math. Phys. 232 (2003), no. 3, 535-563. crossref(new window)

2.
I. Agricola, The Srni lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), 5-84.

3.
I. Agricola, J. Becker-Bender, and H. Kim, Twistorial eigenvalue estimates for generalized Dirac operators with torsion, Adv. Math. 243 (2013), 296-329. crossref(new window)

4.
I. Agricola and Th. Friedrich, On the holonomy of connections with skew-symmetric torsion, Math. Ann. 328 (2004), no. 4, 711-748. crossref(new window)

5.
I. Agricola and Th. Friedrich, The Casimir operator of a metric connection with totally skew-symmetric torsion, J. Geom. Phys. 50 (2004), no. 1-4, 188-204. crossref(new window)

6.
I. Agricola, Th. Friedrich, and M. Kassuba, Eigenvalue estimates for Dirac operators with parallel characteristic torsion, Diff. Geom. Appl. 26 (2008), no. 6, 613-624. crossref(new window)

7.
B. Alexandrov, The first eigenvalue of the Dirac operator on locally reducible Riemannian manifolds, J. Geom. Phys. 57 (2007), no. 2, 467-472. crossref(new window)

8.
B. Alexandrov, Th. Friedrich, and N. Schoemann, Almost Hermitian 6-manifolds revisited, J. Geom. Phys. 53 (2005), no. 1, 1-30. crossref(new window)

9.
H. Baum, Th. Friedrich, R. Grunewald, and I. Kath, Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik, Band 124, Teubner-Verlag Stuttgart/Leipzig, 1991.

10.
J. Becker-Bender, Dirac-Operatoren und Killing-Spinoren mit Torsion, Ph.D. Thesis, University of Marburg, 2012.

11.
F. Belgun and A. Moroianu, Nearly Kahler 6-manifolds with reduced holonomy, Ann. Global Anal. Geom. 19 (2001), no. 4, 307-319. crossref(new window)

12.
A. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete Bd. 10, Springer-Verlag Berlin-Heidelberg, 1987.

13.
J. M. Bismut, A local index theorem for non-Kahlerian manifolds, Math. Ann. 284 (1989), no. 4, 681-699. crossref(new window)

14.
Th. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrummung, Math. Nachr. 97 (1980), 117-146. crossref(new window)

15.
Th. Friedrich and R. Grunewald, On the first eigenvalue of the Dirac operator on 6-dimensional manifolds, Ann Global Anal. Geom. 3 (1985), no. 3, 265-273. crossref(new window)

16.
Th. Friedrich and S. Ivanov, Almost contact manifolds, connections with torsion and parallel spinors, J. Reine Angew. Math. 559 (2003), 217-236.

17.
P. Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, 257-289.

18.
A. Gray, Nearly Kahler manifolds, J. Differential Geometry 4 (1970), 283-309.

19.
M. Kassuba, Eigenvalue estimates for Dirac operators in geometries with torsion, Ann. Global Anal. Geom. 37 (2010), no. 1, 33-71. crossref(new window)

20.
I. Kath, Pseudo-Riemannian T-duals of compact Riemannian homogeneous spaces, Transform. Groups 5 (2000), no. 2, 157-179. crossref(new window)

21.
E. C. Kim, Lower bounds of the Dirac eigenvalues on Riemannian product manifolds, math.DG/0402427.

22.
V. F. Kiricenko, K-spaces of maximal rank, Mat. Zam. 22 (1977), 465-476.

23.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, Wiley Classics Library, Wiley Inc., Princeton, 1991.

24.
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II, Wiley Classics Library, Wiley Inc., Princeton, 1996.

25.
P.-A. Nagy, Skew-symmetric prolongations of Lie algebras and applications, J. Lie Theory 23 (2013), no. 1, 1-33.

26.
C. Olmos and S. Reggiani, The skew-torsion holonomy theorem and naturally reductive spaces, J. Reine Angew. Math. 664 (2012), 29-53.

27.
N. Schoemann, Almost Hermitian structures with parallel torsion, J. Geom. Phys. 57 (2007), no. 11, 2187-2212. crossref(new window)