JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRUCTURE OF SOME CLASSES OF SEMISIMPLE GROUP ALGEBRAS OVER FINITE FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRUCTURE OF SOME CLASSES OF SEMISIMPLE GROUP ALGEBRAS OVER FINITE FIELDS
Makhijani, Neha; Sharma, Rajendra Kumar; Srivastava, J.B.;
  PDF(new window)
 Abstract
In continuation to the investigation initiated by Ferraz, Goodaire and Milies in [4], we provide an explicit description for the Wedderburn decomposition of finite semisimple group algebras of the class of finite groups G, such that , where Z(G) denotes the center of G.
 Keywords
group algebra;Wedderburn decomposition;
 Language
English
 Cited by
 References
1.
G. K. Bakshi, S. Gupta, and I. B. S. Passi, The algebraic structure of finite metabelian group algebras, arXiv:1311.1296 [math.RT], to appear in Comm. Algebra.

2.
P. Charpin, The Reed-Solomon code as ideals of a modular algebra, C. R. Acad. Sci. Paris Ser. I Math. 294 (1982), no. 17, 597-600.

3.
R. A. Ferraz, Simple components of the center of FG/J(FG), Comm. Algebra 36 (2008), no. 9, 3191-3199. crossref(new window)

4.
R. A. Ferraz, E. G. Goodaire, and C. P. Milies, Some classes of semisimple group (and loop) algebras over finite fields, J. Algebra 324 (2010), no. 12, 3457-3469. crossref(new window)

5.
E. Jespers, G. Leal, and C. P. Milies, Classifying indecomposable R.A. loops, J. Algebra 176 (1995), no. 2, 569-584. crossref(new window)

6.
G. Leal and C. P. Milies, Isomorphic group (and loop) algebras, J. Algebra 155 (1993), no. 1. 195-210. crossref(new window)

7.
C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.

8.
V. S. Pless and W. C. Huffman, Handbook of Coding Theory, Elsevier, New York, 1998.

9.
R. E. Sabin and S. J. Lomonaco, Metacyclic error-correcting codes, Appl. Algebra Engrg. Comm. Comput. 6 (1995), no. 3, 191-210. crossref(new window)