JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS
Cho, Sungmin; Park, Eun-Jae;
  PDF(new window)
 Abstract
In this article, we propose and analyze a new nonconforming primal mixed finite element method for the stationary Stokes equations. The approximation is based on the pseudostress-velocity formulation. The incompressibility condition is used to eliminate the pressure variable in terms of trace-free pseudostress. The pressure is then computed from a simple post-processing technique. Unique solvability and optimal convergence are proved. Numerical examples are given to illustrate the performance of the method.
 Keywords
primal mixed finite elements;nonconforming methods;error estimates;Stokes problems;pseudostress-velocity formulation;
 Language
English
 Cited by
 References
1.
D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Model. Math. Anal. Numer. 19 (1985), no. 1, 7-32.

2.
D. N. Arnold and R. S. Falk, A new mixed formulation for elasticity, Numer. Math. 53 (1988), no. 1-2, 13-30. crossref(new window)

3.
G. R. Barrenechea and G. N. Gatica, A primal mixed formulation for exterior transmission problems in ${\mathbf{R}}^2$, Numer. Math. 88 (2001), no. 2, 237-253. crossref(new window)

4.
G. R. Barrenechea, G. N. Gatica, and J.-M. Thomas, Primal mixed formulations for the coupling of FEM and BEM. I. Linear problems, Numer. Funct. Anal. Optim. 19 (1998), no. 1-2, 7-32. crossref(new window)

5.
C. Bernardi, V. Girault, and K. R. Rajagopal, Discretization of an unsteady flow through porous solid modeled by Darcy's equations, Math. Models Methods Appl. Sci. 18 (2008), no. 12, 2087-2123. crossref(new window)

6.
D. Braess, Finite Elements, Cambridge University Press, 1997.

7.
D. Braess, Enhanced assumed strain elements and locking in membrane problems, Comput. Methods Appl. Mech. Engrg. 165 (1998), no. 1-4, 155-174. crossref(new window)

8.
D. Braess, C. Carstensen, and B. D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numer. Math. 96 (2004), no. 3, 461-479. crossref(new window)

9.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Second edition. Texts in Applied Mathematics, 15, Springer-Verlag, New York, 2002.

10.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991.

11.
F. Brezzi, L. D. Marini, and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26 (1989), no. 6, 1342-1355 crossref(new window)

12.
Z. Cai, B. Lee, and P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems, SIAM J. Numer. Anal. 42 (2004), no. 2, 843-859. crossref(new window)

13.
Z. Cai and G. Starke, First-order system least squares for the stress-displacement formulation: linear elasticity, SIAM J. Numer. Anal. 41 (2003), no. 2, 715-730. crossref(new window)

14.
Z. Chen and J. Douglas, Jr, Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems, Mat. Apl. Comput. 10 (1991), no. 2, 137-160.

15.
P. G. Ciarlet, Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.

16.
P. Clement, Approximation by finite element functions using local regularization, RAIRO Analyse Numerique 9 (1975), no. R-2, 77-84.

17.
M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numer. 7 (1973), no. R-3, 33-75.

18.
M. Gerritsma and T. Phillips, Compatible spectral approximations for the velocity-stress-pressure formulation of the Stokes problem, SIAM J. Numer. Anal. 28 (1991), 591-623. crossref(new window)

19.
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: theory and algorithms, Springer Series in Computational Mathematics 5, 1986.

20.
D. Kim and E.-J. Park, Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities, Comput. Math. Appl. 51 (2006), no. 5, 793-804. crossref(new window)

21.
D. Kim and E.-J. Park, A priori and a posteriori analysis of mixed finite element methods for nonlinear elliptic equations, SIAM J. Numer. Anal. 48 (2010), no. 3, 1186-1207. crossref(new window)

22.
M. Norburn and D. Silvester, Stable vs. stabilised mixed methods for incompressible flow, Computer Methods in Applied Mechanics and Engineering 166 (1998), 131-141. crossref(new window)

23.
J. Park, A primal mixed domain decomposition procedure based on the nonconforming streamline diffusion method, Appl. Numer. Math. 50 (2004), no. 2, 165-181. crossref(new window)

24.
J. E. Roberts and J. M. Thomas, Mixed and Hybrid methods, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.) Vol II, 523-639, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1989.

25.
J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg. 29 (1990), no. 8, 1595-1638. crossref(new window)

26.
S. T. Yeo and B. C. Lee, Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle, Internat. J. Numer. Methods Engrg. 39 (1996), no. 18, 3083-3099. crossref(new window)