JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON k-HYPERREFLEXIVITY OF TOEPLITZ-HARMONIC SUBSPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON k-HYPERREFLEXIVITY OF TOEPLITZ-HARMONIC SUBSPACES
Budzynski, Piotr; Piwowarczyk, Kamila; Ptak, Marek;
  PDF(new window)
 Abstract
The 2-hyperreflexivity of Toeplitz-harmonic type subspace generated by an isometry or a quasinormal operator is shown. The k-hyperreflexivity of the tensor product of a k-hyperreflexive decom-posable subspace and an abelian von Neumann algebra is established.
 Keywords
k-hyperreflexive subspace;direct integral;tensor product;isometry;quasinormal operator;
 Language
English
 Cited by
 References
1.
E. Azoff and M. Ptak, A dichotomy for linear spaces of Toeplitz Operators, J. Funct. Anal. 156 (1998), no. 2, 411-428. crossref(new window)

2.
A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728. crossref(new window)

3.
J. B. Conway, A Course in Operator Theory, American Mathematical Society, Providence, RI, 2000.

4.
J. B. Conway and M. Ptak, The harmonic functional calculus and hyperreflexivity, Pacific J. Math. 204 (2002), no. 1, 19-29. crossref(new window)

5.
K. R. Davidson, The distance to the analytic Toeplits operators, Illinois J. Math. 7 (1987), no. 2, 265-273.

6.
J. Dixmier, Von Neumann Algebras, North-Holland, Amsterdam, 1981.

7.
D. Hadwin and E. A. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory 7 (1982), no. 1, 3-23.

8.
D. Hadwin and E. A. Nordgren, Erratum-subalgebras of reflexive algebras, J. Operator Theory 15 (1986), no. 1, 203-204.

9.
D. Hadwin, A general view of reflexivity, Trans. Amer. Math. Soc. 344 (1994), no. 1, 325-360. crossref(new window)

10.
K. Klis and M. Ptak, Quasinormal operators and reflexive subspaces, Rocky Mountain J. Math. 33 (2003), no. 4, 1395-1402. crossref(new window)

11.
K. Klis and M. Ptak, Quasinormal operators are hyperreflexive, Topological algebras, their applications, and related topics, 241-244, Banach Center Publ., 67, Polish Acad. Sci., Warsaw, 2005.

12.
K. Klis and M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32 (2006), no. 1, 299-313.

13.
J. Kraus and D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), no. 2, 340-356.

14.
M. Ptak, Projections onto the spaces of Toeplitz operators, Ann. Polon. Math. 86 (2005), no. 2, 97-105. crossref(new window)

15.
S. Rosenoer, Distance estimates for von Neumann algebras, Proc. Amer. Math. Soc. 86 (1982), no. 2, 248-252. crossref(new window)

16.
S. Rosenoer, Nehari's theorem and the tensor product of hyper-reflexive algebras, J. London Math. Soc. 47 (1993), no. 2, 349-357.

17.
J. T. Schwartz, $W^*$-Algebras, Gordon and Breach, New York, 1967.