JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS
Kim, Hwankoo; Kwon, Tae In; Rhee, Min Surp;
  PDF(new window)
 Abstract
We introduce the concept of w-zero-divisor (w-ZD) rings and study its related rings. In particular it is shown that an integral domain R is an SM domain if and only if R is a w-locally Noetherian w-ZD ring and that a commutative ring R is w-Noetherian if and only if the polynomial ring in one indeterminate R[X] is a w-ZD ring. Finally we characterize universally zero divisor rings in terms of w-ZD modules.
 Keywords
zero divisor;zero divisor ring;zero divisor module;universally zero divisor ring;w-operation;
 Language
English
 Cited by
1.
ON PIECEWISE NOETHERIAN DOMAINS, Journal of the Korean Mathematical Society, 2016, 53, 3, 623  crossref(new windwow)
 References
1.
S. El Baghdadi, On a class of Prufer v-multiplication domains, Comm. Algebra 30 (2002), no. 8, 3723-3742. crossref(new window)

2.
S. El Baghdadi, H. Kim, and F. Wang, A note on generalized Krull domains, J. Algebra Appl. 13 (2014), no. 7, 1450029 (18 pp).

3.
E. G. Evans, Jr., Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155 (1971), no. 2, 505-512. crossref(new window)

4.
G. Fusacchia, Strong semistar Noetherian domains, Houston J. Math. 39 (2013), no. 1, 1-20.

5.
R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, vol 90, Queen's University, Kingston, Ontario, 1992.

6.
R. W. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1980), no. 1, 13-16. crossref(new window)

7.
J. R. Hedstrom and E. G. Houston, Some remarks on star operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37-44. crossref(new window)

8.
W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra 101 (1981), no. 1, 101-114.

9.
W. Heinzer and J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), no. 2, 273-284. crossref(new window)

10.
W. Heinzer and J. Ohm, On the Noetherian-like rings of E. G. Evans, Proc. Amer. Math. Soc. 34 (1972), no. 1, 73-74. crossref(new window)

11.
B. G. Kang, Prufer v-multiplication domains and the ring ${R[X]_N}_v$, J. Algebra 123 (1989), no. 1, 151-170. crossref(new window)

12.
I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago 1974.

13.
H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra 36 (2008), no. 5, 1649-1670. crossref(new window)

14.
H. Kim and T. I. Kwon, Integral domains which are t-locally Noetherian, J. Chungcheong Math. Soc. 24 (2011), 843-848.

15.
H. Kim and F. Wang, On ${\phi}$-strong Mori rings, Houston J. Math. 38 (2012), no. 2, 359-371.

16.
M. H. Park, Power series rings over strong Mori domains. J. Algebra 270 (2003), no. 1, 361-368. crossref(new window)

17.
S. Visweswaran, A note on universally zero-divisor rings. Bull. Austral. Math. Soc. 43 (1991), no. 2, 233-239. crossref(new window)

18.
F. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9.

19.
F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. crossref(new window)

20.
F. Wang and J. Zhang, Injective modules over w-Noetherian rings, Acta Math. Sinica (Chin. Ser.) 53 (2010), no. 6, 1119-1130.

21.
L. Xie, F. Wang, and Y. Tian, On w-linked overrings, J. Math. Res. Exposition 31 (2011), no. 2, 337-346.

22.
H. Yin, F. Wang, X. Zhu, and Y. Chen. w-Modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. crossref(new window)