JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON REFLEXIVE MODULES OVER COMMUTATIVE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON REFLEXIVE MODULES OVER COMMUTATIVE RINGS
Geng, Yuxian; Ding, Nanqing;
  PDF(new window)
 Abstract
Let R be a commutative ring and U an R-module. The aim of this paper is to study the duality between U-reflexive (pre)envelopes and U-reflexive (pre)covers of R-modules.
 Keywords
reflexive module;(pre)envelope;(pre)cover;
 Language
English
 Cited by
 References
1.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.

2.
M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969.

3.
R. G. Belshoff, Matlis reflexive modules, Comm. Algebra 19 (1991), no. 4, 1099-1118. crossref(new window)

4.
R. G. Belshoff, Remarks on reflexive modules, covers, and envelopes, Beitrage Algebra Geom. 50 (2009), no. 2, 353-362.

5.
R. G. Belshoff, E. E. Enochs, and J. R. Garcia Rozas, Generalized Matlis duality, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1307-1312. crossref(new window)

6.
R. G. Belshoff and J. Z. Xu, Injective envelopes and flat covers of Matlis reflexive modules, J. Pure Appl. Algebra 79 (1992), no. 3, 205-215. crossref(new window)

7.
W. Bruns and J. Herzog, Cohen-Macaulay Rings (revised edition), Advances in Math. 39, Cambridge Univ. Press, Cambridge, UK, 1996.

8.
L. W. Christensen, Gorenstein Dimension, Lecture Notes in Math. 1747, Springer-Verlag, Berlin, 2000.

9.
N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459-1470. crossref(new window)

10.
E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. crossref(new window)

11.
E. E. Enochs, J. R. Garcia Rozas, and L. Oyonarte, Compact coGalois groups, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 2, 233-244. crossref(new window)

12.
E. E. Enochs, J. R. Garcia Rozas, and L. Oyonarte, Covering morphisms, Comm. Algebra 28 (2000), no. 8, 3823-3835. crossref(new window)

13.
E. E. Enochs, J. R. Garcia Rozas, and L. Oyonarte, Are covering (enveloping) morphisms minimal?, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2863-2868. crossref(new window)

14.
E. E. Enochs, J. R. Garcia Rozas, and L. Oyonarte, Finitely generated cotorsion modules, Proc. Edinb. Math. Soc. 44 (2001), no. 1, 143-152. crossref(new window)

15.
E. E. Enochs and Z. Y. Huang, Injective envelopes and (Gorenstein) flat covers, Algebr. Represent. Theory 15 (2012), no. 6, 1131-1145. crossref(new window)

16.
E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. crossref(new window)

17.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin-New York, 2000.

18.
E. E. Enochs, O. M. G. Jenda, and J. Z. Xu, A generalization of Auslander's last theorem, Algebr. Represent. Theory 2 (1999), no. 3, 259-268. crossref(new window)

19.
M. Hashimoto and A. Shida, Some remarks on index and generalized Loewy length of a Gorenstein local ring, J. Algebra 187 (1997), no. 1, 150-162. crossref(new window)

20.
H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. crossref(new window)

21.
Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169. crossref(new window)

22.
Z. Y. Huang, Duality of preenvelopes and pure injective modules, Canad. Math. Bull. 57 (2014), no. 2, 318-325. crossref(new window)

23.
D. A. Jorgensen and L. M. Sega, Independence of the total reflexivity conditions for modules, Algebr. Represent. Theory 9 (2006), no. 2, 217-226. crossref(new window)

24.
W. V. Vasconcelos, Reflexive modules over Gorenstein rings, Proc. Amer. Math. Soc. 19 (1968), 1349-1355. crossref(new window)

25.
W. M. Xue, Injective envelopes and flat covers of modules over a commutative ring, J. Pure Appl. Algebra 109 (1996), no. 2, 213-220. crossref(new window)

26.
Y. Yoshino, Cohen-Macaulay approximations, In: Proc. symposium on representation theory of algebras (Izu, Japan, 1993) pp. 119-138 (in Japanese).