JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION
Jin, Dae Ho;
  PDF(new window)
 Abstract
In this paper, we study lightlike hypersurfaces of an indefinite Kaehler manifold with a quarter-symmetric metric connection. We prove several classification theorems for such a lightlike hypersurface.
 Keywords
quarter-symmetric connection;metric connection;lightlike hypersurface;
 Language
English
 Cited by
 References
1.
C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.

2.
G. de Rham, Sur la reductibilite d'un espace de Riemannian, Comment. Math. Helv. 26 (1952), 328-344. crossref(new window)

3.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

4.
K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.

5.
K. L. Duggal and D. H. Jin, A classification of Einstein lightlike hypersurfaces of a Lorentzian space form, J. Geom. Phys. 60 (2010), no. 12, 1881-1889. crossref(new window)

6.
K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submanifolds, Frontiers in Mathematics, Birkhauser, 2010.

7.
S. Golab, On semi-symmetric and quarter-symmetric connections, Tensor (N.S.) 29 (1975), 249-254.

8.
D. Kamilya and U. C. De, Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 26 (1995), no. 1, 29-34.

9.
R. S. Mishra and S. N. Pandey, On quarter-symmetric F-connections, Tensor (N.S.) 34 (1980), no. 1, 1-7.

10.
J. Nikic and N. Pusic, A remakable class of natural metric quarter-symmetric connection on a hyperbolic Kaehler space, Conference "Applied Differential Geometry: General Relativity"-Workshop "Global Analysis, Differential Geometry, Lie Algebras", 96-101, BSG Proc., 11, Geom. Balkan Press, Bucharest, 2004.

11.
B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

12.
N. Pusic, On quarter-symmetric metric connections on a hyperbolic Kaehler space, Publ. de l' Inst. Math. 73(87) (2003), 73-80.

13.
S. C. Rastogi, On quarter-symmetric metric connections, C. R. Acad Bulgare Sci. 31 (1978), no. 7, 811-814.

14.
S. C. Rastogi, On quarter-symmetric metric connections, Tensor (N.S.) 44 (1987), no. 2, 133-141.

15.
K. Yano and T. Imai, Quarter-symmwtric metric connection and their curvature tensors, Tensor (N.S.) 38 (1982), 13-18.