JOURNAL BROWSE
Search
Advanced SearchSearch Tips
QUASI-COMMUTATIVE SEMIGROUPS OF FINITE ORDER RELATED TO HAMILTONIAN GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
QUASI-COMMUTATIVE SEMIGROUPS OF FINITE ORDER RELATED TO HAMILTONIAN GROUPS
Sorouhesh, Mohammad Reza; Doostie, Hossein;
  PDF(new window)
 Abstract
If for every elements x and y of an associative algebraic structure (S, ) there exists a positive integer r such that , then S is called quasi-commutative. Evidently, every abelian group or commutative semigroup is quasi-commutative. Also every finite Hamiltonian group that may be considered as a semigroup, is quasi-commutative however, there are quasi-commutative semigroups which are non-group and non commutative. In this paper, we provide three finitely presented non-commutative semigroups which are quasi-commutative. These are the first given concrete examples of finite semigroups of this type.
 Keywords
quasi-commutativity;finitely presented semigroups;
 Language
English
 Cited by
 References
1.
C. M. Campbell, E. F. Robertson, N. Ruskuc, and R. M. Thomas, Semigroup and group presentations, Bull. Lond. Math. Soc. 27 (1995), no. 1, 46-50. crossref(new window)

2.
C. M. Campbell, E. F. Robertson, N. Ruskuc, R. M. Thomas, and Y. Unlu, Certain one-relator products of semigroups, Comm. Algebra 23 (1995), no. 14, 5207-5219. crossref(new window)

3.
M. Chacron and G. Thierrin, ${\sigma}$-reflexive semigroups and rings, Canad. Math. Bull. 15 (1972), 185-188. crossref(new window)

4.
A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups I, Amer. Math. Soc., 1961.

5.
A. C. Spoletini and A. Varisco, Quasicommutative semigroups and ${\sigma}$-reflexive semigroups, Semigroup Forum 19 (1980), no. 4, 313-321.

6.
A. C. Spoletini and A. Varisco, Quasi Hamiltonian semigroups, Czechoslovak Math. J. 33 (1983), no. 1, 131-140.

7.
J. M. Howie, An Introduction to Semigroup Theory, Academic Press Inc., 1976.

8.
N. P. Mukherjee, Quasicommutative semigroups. I, Czechoslovak Math. J. 22 (1972), 449-453.

9.
B. Pondelicek, Note on Quasi-Hamiltonian semigroups, Casopis pro pestovani matematiky 110 (1985), no. 4, 356-358.

10.
K. P. Shum and X. M. Ren, On super Hamiltonian semigroups, Czechoslovak Math. J. 54 (2004), no. 1, 247-252. crossref(new window)

11.
K. P. Shum and L. Zhang, Generalized Quasi Hamiltonian semigroups, Int. J. Pure Appl. Math. 53 (2009), no. 4, 461-475.