JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SPACELIKE ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SPACELIKE ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
Dursun, Ugur;
  PDF(new window)
 Abstract
In this paper, we study a class of spacelike rotational surfaces in the Minkowski 4-space with meridian curves lying in 2-dimensional spacelike planes and having pointwise 1-type Gauss map. We obtain all such surfaces with pointwise 1-type Gauss map of the first kind. Then we prove that the spacelike rotational surface with flat normal bundle and pointwise 1-type Gauss map of the second kind is an open part of a spacelike 2-plane in .
 Keywords
pointwise 1-type Gauss map;rotational surfaces;parallel mean curvature vector;normal bundle;
 Language
English
 Cited by
1.
General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric, Bulletin of the Malaysian Mathematical Sciences Society, 2016  crossref(new windwow)
 References
1.
K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, and G. Ozturk, Rotational embeddings in $E^4$ with pointwise 1-type gauss map, Turk J. Math. 34 (2010), 1-7.

2.
B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapor-New Jersey-London, 1984.

3.
B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455. crossref(new window)

4.
B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Aust. Math. Soc. 35 (1987), no. 2, 161-186. crossref(new window)

5.
M. Choi, D. S. Kim, and Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46 (2009), no. 1, 215-223. crossref(new window)

6.
M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.

7.
M. Choi, D. S. Kim, Y. H. Kim, and D. W. Yoon, Circular cone and its Gauss map, Colloq. Math. 129 (2012), no. 2, 203-210. crossref(new window)

8.
M. Choi, Y. H. Kim, and D. W. Yoon, Classification of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 15 (2011), no. 3, 1141-1161. crossref(new window)

9.
F. N. Cole, On rotations in space of four dimensions, Amer. J. Math. 12 (1890), no. 2, 191-210. crossref(new window)

10.
U. Dursun, Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 11 (2007), no. 5, 1407-1416. crossref(new window)

11.
U. Dursun, Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space, Proc. Est. Acad. Sci. 58 (2009), no. 3, 146-161. crossref(new window)

12.
U. Dursun, Flat surfaces in the Euclidean space $E^3$ with pointwise 1-type Gauss map, Bull. Malays. Math. Sci. Soc. 33 (2010), no. 2, 469-478.

13.
U. Dursun and E. Coskun, Flat surfaces in the Minkowski space $E^3_1$ with pointwise 1-type Gauss map, Turk. J. Math. 36 (2012), no. 4, 613-629.

14.
U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space ${\mathbb{E}}^4$ with pointwise 1-type Gauss map, Math. Commun. 17 (2012), no. 1, 71-81.

15.
U. Dursun and N. C. Turgay, On spacelike surfaces in Minkowski 4-space with pointwise 1-type Gauss map of the second kind, Balkan J. Geom. App. 17 (2012), 34-45.

16.
U. Dursun and N. C. Turgay, Spacelike surfaces in Minkowski space ${\mathbb{E}}^4_1$ with pointwise 1-type Gauss map, submitted.

17.
U. H. Ki, D. S. Kim, Y. H. Kim, and Y. M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), no. 1, 317-338. crossref(new window)

18.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205. crossref(new window)

19.
Y. H. Kim and D. W. Yoon, Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc. 41 (2004), no. 2, 379-396. crossref(new window)

20.
Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581. crossref(new window)

21.
C. L. E. Moore, Surfaces of rotation in a space of four dimensions, Ann. Math. 21 (1919), no. 2, 81-93. crossref(new window)