JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON POLARS OF MIXED COMPLEX PROJECTION BODIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON POLARS OF MIXED COMPLEX PROJECTION BODIES
Liu, Lijuan; Wang, Wei; Huang, Qingzhong;
  PDF(new window)
 Abstract
In this paper we establish general Minkowski inequality, Aleksandrov-Fenchel inequality and Brunn-Minkowski inequality for polars of mixed complex projection bodies.
 Keywords
polar;convex body;mixed complex projection bodies;
 Language
English
 Cited by
 References
1.
J. Abardia, Difference bodies in complex vector spaces, J. Funct. Anal. 263 (2012), no. 11, 3588-3603. crossref(new window)

2.
J. Abardia and A. Bernig, Projection bodies in complex vector spaces, Adv. Math. 211 (2011), no. 2, 830-846.

3.
E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345. crossref(new window)

4.
T. Bonnesen and W. Fenchel, Theorie der konvexen Korper, Springer-Verlag, Berlin, 1934.

5.
J. Bourgain and J. Lindenstrauss, Projection bodies, Geometric aspects of functional analysis (1986/87), 250-270, Lecture Notes in Math., 1317, Springer, Berlin, 1988.

6.
W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Korper, Det. Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 16 (1938), no. 3, 1-31.

7.
R. J. Gardner, Geometric Tomography, Second ed., Cambridge Univ. Press, New York, 2006.

8.
C. Haberl, Minkowski valuations intertwining with the special linear group, J. Eur. Math. Soc. 14 (2012), no. 5, 1565-1597. crossref(new window)

9.
Q. Z. Huang, B. W. He, and G. T. Wang, The Busemann theorem for complex p-convex bodies, Arch. Math. 99 (2012), no. 3, 289-299. crossref(new window)

10.
A. Koldobsky, Fourier Analysis in Convex Geometry, Math. Surveys Monogr., vol. 116, Amer. Math. Soc., 2005.

11.
A. Koldobsky, H. Konig, and M. Zymonopoulou, The complex Busemann-Petty problem on sections of convex bodies, Adv. Math. 218 (2008), no. 2, 352-367. crossref(new window)

12.
A. Koldobsky, G. Paouris, and M. Zymonopoulou, Complex intersection bodies, J. Lond. Math. Soc. 88 (2013), no. 2, 538-562. crossref(new window)

13.
A. Koldobsky and M. Zymonopoulou, Extremal sections of complex $l_p-ball$, $0, Studia Math. 159 (2003), no. 2, 185-194. crossref(new window)

14.
G. S. Leng, C. J. Zhao, B.W. He, and X. Y. Li, Inequalities for polars of mixed projection bodies, Sci. China Ser. A 47 (2004), no. 2, 175-186. crossref(new window)

15.
M. Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), no. 2, 158-168. crossref(new window)

16.
M. Ludwig, Minkowski areas and valuations, J. Differential Geom. 86 (2010), no. 1, 133-161.

17.
E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), 91-105. crossref(new window)

18.
E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (1993), 901-916. crossref(new window)

19.
E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski prob-lem, J. Differential Geom. 38 (1993), 131-150.

20.
E. Lutwak, Selected affine isoperimetric inequalities, Handbook of convex geometry, Vol. A, B, 151-176, North-Holland, Amsterdam, 1993.

21.
E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244-294. crossref(new window)

22.
C. M. Petty, Projection bodies, Proc. Colloquium on Convexity (Copenhagen, 1965), pp. 234-241, Kobenhavns Univ. Mat. Inst., Copenhagen, 1967.

23.
C. M. Petty, Isoperimetric problems, Proceedings of the Conference on Convexity and Combinatorial Geometry (Univ. Oklahoma, Norman, Okla., 1971), pp. 26-41. Dept. Math., Univ. Oklahoma, Norman, Okla., 1971.

24.
B. Rubin, Comparison of volumes of convex bodies in real, complex, and quaternionic spaces, Adv. Math. 225 (2010), no. 3, 1461-1498. crossref(new window)

25.
R. Schneider, Zu einem Problem von Shephard uber die Projektionen konvexer Korpor, Math. Z. 101 (1967), 71-82. crossref(new window)

26.
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.

27.
F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika 53 (2006), no. 2, 211-234. crossref(new window)

28.
F. E. Schuster, Convolutions and multiplier transformations of convex bodies, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5567-5591. crossref(new window)

29.
F. E. Schuster and T. Wannerer, GL(n) contravariant Minkowski valuations, Trans. Amer. Math. Soc. 364 (2012), no. 2, 815-826. crossref(new window)

30.
W. Wang and R. G. He, Inequalities for mixed complex projection bodies, Taiwanese J. Math. 17 (2013), no. 6, 1887-1899.

31.
G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777-801. crossref(new window)

32.
C. J. Zhao, $L_p$-dual Quermassintegral sums, Sci. China Ser. A 50 (2007), no. 9, 1347-1360. crossref(new window)

33.
C. J. Zhao, On radial and polar Blaschke-Minkowski homomorphisms, Proc. Amer. Math. Soc. 141 (2013), no. 2, 667-676.

34.
C. J. Zhao, Volume differences of mixed complex projection bodies, Bull. Belgian Math. Soc. 21 (2014), no. 3, 553-564.

35.
C. J. Zhao and G. S. Leng, On polars of mixed projection bodies, J. Math. Anal. Appl. 316 (2006), no. 2, 664-678. crossref(new window)

36.
M. Zymonopoulou, The complex Busemann-Petty problem for arbitrary measures, Arch. Math. (Basel) 91 (2008), no. 5, 436-449. crossref(new window)

37.
M. Zymonopoulou, The modified complex Busemann-Petty problem on sections of convex bodies, Positivity 13 (2009), no. 4, 717-733. crossref(new window)