JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE EQUATION 𝜙(5m - 1)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE EQUATION 𝜙(5m - 1)
Faye, Bernadette; Luca, Florian; Tall, Amadou;
  PDF(new window)
 Abstract
Here, we show that the title equation has no positive integer solutions (m, n), where is the Euler function.
 Keywords
Diophantine equations;applications of primitive divisors;applications of sieve methods;
 Language
English
 Cited by
1.
On the equation φ(Xm - 1) = Xn - 1, International Journal of Number Theory, 2015, 11, 05, 1691  crossref(new windwow)
 References
1.
J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S.Wagstaff, Jr., Factor-izations of $ b^n{\pm}1$, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, American Mathematical Society, Providence, RI, 1988.

2.
R. D. Carmichael, On the numerical factors of the arithmetic forms ${\alpha}^n+{\beta}^n$, Ann. Math. (2) 15 (1913), no. 1-4, 30-70. crossref(new window)

3.
J. Cilleruelo and F. Luca, Repunit Lehmer numbers, Proc. Edinb. Math. Soc. 54 (2011), no. 1, 55-65. crossref(new window)

4.
M. T. Damir, B. Faye, F. Luca, and A. Tall, Members of Lucas sequences whose Euler function is a power of 2, Fibonacci Quart. 52 (2014), no. 1, 3-9.

5.
W. Ljunggren, Some theorems on indeterminate equations of the form xn−1/x−1 = yq, Norsk Mat. Tidsskr. 25 (1943), 17-20.

6.
F. Luca, Problem 10626, American Math. Monthly 104 (1997), 871. crossref(new window)

7.
F. Luca, Equations involving arithmetic functions of Fibonacci and Lucas numbers, Fi-bonacci Quart. 38 (2000), no. 1, 49-55.

8.
F. Luca, Euler indicators of binary recurrence sequences, Collect. Math. 53 (2002), no. 2, 133-156.

9.
F. Luca, On the Euler function of repdigits, Czechoslovak Math. J. 58 (2008), no. 1, 51-59. crossref(new window)

10.
F. Luca and M. Mignotte, ${\phi}(F_{11})=88$, Divulg. Mat. 14 (2006), no. 2, 101-106.

11.
F. Luca and P. Stanica, Equations with arithmetic functions of Pell numbers, Bull. Soc. Mat. Roumanie, to appear.

12.
H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134. crossref(new window)

13.
J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.