JOURNAL BROWSE
Search
Advanced SearchSearch Tips
UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS
Chang, Gyu Whan;
  PDF(new window)
 Abstract
Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f
 Keywords
upper to zero;maximal ideal;polynomial ring;G-domain;
 Language
English
 Cited by
 References
1.
D. F. Anderson and G. W. Chang, Almost splitting sets in integral domains. II, J. Pure Appl. Algebra 208 (2007), no. 1, 351-359. crossref(new window)

2.
E. Artin and J. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3 (1951), 74-77. crossref(new window)

3.
M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.

4.
R. Gilmer, The pseudo-radical of a commutative ring, Pacific J. Math. 19 (1966), 275-284. crossref(new window)

5.
R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.

6.
J. R. Hedstrom and E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37-44. crossref(new window)

7.
E. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969. crossref(new window)

8.
B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_N_v$, J. Algebra 123 (1989), no. 1, 151-170. crossref(new window)

9.
I. Kaplansky, Commutative Rings, Revised edition. The University of Chicago Press, Chicago, Ill.-London, 1974.

10.
P. May, Munshi's proof of the Nullstellensatz, Amer. Math. Monthly 110 (2003), no. 2, 133-140. crossref(new window)

11.
M. Nagata, Local Rings, Interscience, New York, 1962.

12.
F. Zanello, When are there infinitely many irreducible elements in a principal ideal domain?, Amer. Math. Monthly 111 (2004), no. 2, 150-152. crossref(new window)